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ABSTRACT
Unstructuredtetrahedralgrids are a commondata
representationof three-dimensionalscalar �elds.
For convex unstructuredmeshesef�cient rendering
methodsareknown. For concave or cyclic meshes,
however, a signi�cant overheadis requiredto sort
the grid cells in back to front order. In this pa-
per we apply methodsknown from computational
geometryto transformconcave into convex grids.
While this issuehasbeenstudiedin theory it has
not yet beenappliedto thespeci�c areaof unstruc-
turedvolumerendering.This is mainly dueto the
complexity of the requiredgeometricaloperations.
Wedemonstratethattheconvexi�cation of concave
grids can be achieved by a combinationof sim-
ple operationson trianglemeshes.For convexi�ed
meshestheexperimentalresultsshow that theper-
formancepenalty is only about70% in compari-
son to approximately300% for the fastestknown
concave sorting algorithm. In order to achieve
high-quality visualizationswe also adaptthe pre-
integratedlighting techniqueto cell projection.

KEY WORDS
Volume rendering, unstructuredgrids, cell pro-
jection, visibility sorting, convexi�cation, pre-
integration.

1 Moti vation and RelatedWork

Consideringthe functional range of graphics li-
brarieslikeOpenGLit is obviousthattheselibraries
have a rich tool set for manipulationand render-
ing of trianglemeshes.On theotherhand,tetrahe-
dralmeshes,whicharethethree-dimensionalcoun-
terpartof trianglemeshes,have very little support.
However, if a volumetric primitive were available
right out of thebox, directvolumevisualizationof
unstructuredgrids would be straight forward. To
achieve this goal, King et al. [7] have proposeda
dedicatedgraphicshardware architecture,but un-
fortunately the architecturehas not beenrealized
yet. Ef�cient sweepplanealgorithmsfor unstruc-

tureddataarewell established[14, 3], but currently
thebestsuitedmethodfor dealingwith volumetric
renderingprimitivesis theprojectedtetrahedra(PT)
algorithmof Shirley andTuchman[13].

Recently, a competinghardware-acceleratedap-
proachhas beenpresentedby Weiler et al. [18].
They proposeda hardware-acceleratedray caster.
While this is a promisingapproach,it currentlyhas
severaldrawbacks.First theavailabletexturemem-
ory limits the maximumnumberof cells that can
beray cast.Secondly, ray castingis a screenspace
methodasopposedto thePTalgorithm,which is an
object-spacemethod. Finally, the performanceof
a hardware-acceleratedraycastermayincreasesig-
ni�cantly with future graphicscardsbut right now
its performanceis in fact still lower than thoseof
actualoptimizedimplementationsof the PT algo-
rithm.

ThePT algorithmrequiresthecellsof thegrid to
besortedin a backto front fashion.This procedure
is known asvisibility or depthsorting,which Wit-
tenbrink[22] pointsout, is themain limiting factor
of thePT algorithm.In thefollowing we show how
to remedythismainde�ciency of thePTalgorithm.
By introducingan ef�cient visibility sorting algo-
rithm we gainasigni�cant performanceadvantage.

A readerfamiliarwith thetopicof visibility sort-
ing mayskip the introductionin the following sec-
tion andmayjumpdirectly to Section3.

2 The PT Algorithm

Thecell projectionalgorithmof Shirley andTuch-
man is commonly called the projectedtetrahedra
(PT)algorithm.It takesascalarvolumeconstructed
from tetrahedraas input, and composesthe pro-
jectedtetrahedralcells in a back to front fashion.
The footprint of eachprojectedtetrahedroneither
consistsof threeor four trianglescenteredaround
the “thick vertex” of the tetrahedronas illustrated
in Figure1.

The volumetric primitive of a tetrahedronis
transferredinto a triangularrepresentationthatcan
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Class 1a Class 1b Class 2

thick vertex

Figure 1: Classi�cation of non-degeneratedpro-
jectedtetrahedra(top row) and the corresponding
decomposition(bottom row) accordingto Shirley
andTuchman[13].

be renderedef�ciently by the graphicshardware.
This explainsthepopularityof thealgorithm,since
its performancedirectly relatesto the numberof
cells in the dataset. In contrastto ray castingand
sweepplanemethodstheperformanceis almostin-
dependentof thesizeof theviewing window.

In recentyearstheoriginalapproachhasbeenex-
tendedin numerousways and is still underactive
research.The �rst improvementwaspresentedby
Steinet al. [16]. They useda moreaccurateexpo-
nentialinterpolationof opacitiesinsidethetetrahe-
drainsteadof thelinearapproximationof theorigi-
nalapproach.

In principle,thecolorsandopacitiesassignedto
thetetrahedraldecompositioncorrespondto theline
integral alongthe intersectionof eachviewing ray
with thetetrahedron.Usingthevolumedensityop-
tical modelof Williams [19, 10], thecomplexity of
theline integraldependsonthetransferfunctionsof
theopticalmodel.

The line integral can be solved analytically for
thespecialcaseof a linear transferfunction. Later
thiswasextendedfor piecewiselineartransferfunc-
tionsin theHIACsystem[20]. Forarbitrarytransfer
functions,however, a numericalintegrationof the
transferfunction is necessary. While thenumerical
integrationcannotbeperformedon the�y , the line
integral canbepre-computedandstoredin a three-
dimensionallookup table. This approachis called
pre-integratedcell projection[12, 9].

Most recently, the increasingprogrammability
of the graphicshardware has lead to further im-
provements:Thelargesizeof thethree-dimensional
pre-integration table preventedthe useof a high-

resolutiontransferfunction.This drawbackwasre-
solved by a polynomial reconstructionof the pre-
integration table in the pixel shaderof modern
graphicsaccelerators[5]. Usingthis approachonly
the coef�cients for the Lagrangianpolynomialap-
proximationof the line integral needto be stored
insteadof the memoryconsumingpre-integration
tableitself.

Using the increasingcapabilitiesof graphicsac-
celeratorsthe decompositionof the tetrahedrainto
trianglescanalsobeperformedin thevertex shader.
This is called hardware-acceleratedcell projec-
tion [17, 23]. Although this approachdoesnot yet
leadto a signi�cant performancegainit is expected
thatgraphicsacceleratorsof thenext generationwill
be muchmoreef�cient. Thenthe renderingspeed
primarily doesnot dependon the performanceof
thecell projection,but ratheronthespeedby which
the CPU is ableto feedthe GPU over the AGP or
PCI-Expressbus.

Sincethetetrahedramustbeprocessedin asorted
order, that is usuallyin a backto front fashion,the
overall systemperformancewill be determinedby
theef�ciency of thevisibility sortingalgorithmand
thespeedof thedatatransferover thebus. Witten-
brink [22] pointsout thata read-write-readcycleof
thetetrahedrais mandatoryfor visibility sortingand
concludesthatthememoryaccessrequiredfor each
tetrahedronis themainlimiting factorof thePT al-
gorithm.

Therefore,our primegoal in this paperis to de-
vise a visibility sorting algorithm that keepspace
with thegrowing speedof thegraphicsaccelerators.
For thispurposewe�rst giveabrief survey of exist-
ing visibility sortingmethodsanddiscusstheir ad-
vantagesandtheir limitations.

3 Visibility Sorting

By de�nition an unstructuredtetrahedralgrid is a
collectionof tetrahedra,whereit is assumedthatthe
intersectionof two tetrahedrais eitherempty or a
commonface. An unstructuredgrid is said to be
convex, if the faceswhich arenot sharedbetween
two tetrahedraform theconvex hull of thedataset.
This de�nition of a convex grid excludesboth the
disconnectivity of thedatasetandtheexistenceof
cavities.

Thetaskof visibility sortingis closelyrelatedto
graphtheory:for aconvex grid thesetof tetrahedral
pairs(A,B) with acommonfacede�ne theedgesof
a directedgraph. The direction of eachedgede-
terminesthe 'behind' relationship,that is whether
or not cell A occludescell B. The directionof the
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edgecanbe determinedquickly by computingthe
dot productof the viewing directionwith the nor-
malof thecommonface.

The directedgraphimposesan orderingon the
set of tetrahedrawhich is said to be the visibility
or depthordering. If the directedgraphis acyclic
(DAG) thenthe orderingis total but it neednot be
unique.

Thewell known MPVO algorithmof Williams et
al. [21] computesa visibility orderingfor a convex
gridby traversingtheDAG: whenever thealgorithm
encountersa cell which doesnot occludeunvisited
neighboursit outputsthecell, otherwiseit traverses
thegraphin thedirectionof theedges.In this fash-
ion a depthsortedlist of tetrahedrais constructed
for eachspeci�c pointof view.

Thecostof theMPVO algorithmis equalto the
costof a depth-�rst or breadth-�rstgraphtraversal,
sothattherun time complexity is linearin termsof
thenumberof cells.

4 Treatmentof Cycles

It hasto bementionedthat in themajority of cases
thesortinggraphwill bea DAG. However, a cycle
may occur quite easily. For examplea gearwith
slantedteethmayhaveacycle: whenlookingalong
theaxisof thegeartheteethmayoccludeeachother
in a cyclic way (seealsoWilliams et al. [21]).

In the caseof a cyclic graphany graphsorting
algorithmwill fail, but we still have two optionsto
proceed. The �rst option is to cut the cycle apart
by selectinganappropriatecuttingplane.This is a
dif�cult taskevenfor simplecycles.A betteroption
is to usetheMPVO-Calgorithmof Krausetal. [8].

This algorithm can handlearbitrary meshesin-
cludingcyclic mesheswithout theneedof sorting,
but hasquadraticrun time in contrastto the linear
run timeof theMPVO algorithm.TheMPVO-Cal-
gorithm is the three-dimensionalanalogueto Sny-
derandLengyel's algorithmof renderingcyclic tri-
angles.

Sincethe run time is quadraticwe needto use
MPVO-C asa fall-backsolution. In the casethat
thevisibility sortingalgorithmhasdetecteda cycle
we useMPVO-C to renderthesmallgroupof cells
that causethe cycle. In combinationwith MPVO
thedetectionof a cycle andtheidenti�cation of its
cellsis straightforwardusingstandardgraphtheory
anddoesnotincreasetheruntimecomplexity of the
MPVO algorithm(alsocompare[8]).

If a cycle is detectedon the�y , theMPVO-C al-
gorithm is triggeredfor the set of cells that form
the cycle. Sincetheseusuallyonly make up for a

tiny fraction of the entire dataset, the worst case
runtimecomplexity is quadraticbut theaveragerun
time complexity is still linear.

5 Visibility Sorting of ConcaveGrids

Concave or disconnectedgrids cannotbe handled
correctlyby theMPVO algorithmsincethebehind
relationsare not de�ned for the boundaryfaces.
This fact is illustratedin Figure 2 which shows a
gearrenderedwith correctorderingandadifference
imageshowing theartifactsproducedby theMPVO
algorithm.A straightforwardsolutionfor thisprob-
lem is simply to addthemissingrelationsbetween
theboundaryfacesto theDAG.

Figure2: Artif actsproducedby incorrectvisibility
orderingusingtheMPVO algorithm(correctimage
on theleft anddifferenceimageon theright).

Severalalgorithmsareknown whichcomputethe
missingrelations. The MPVO-NC algorithmis an
extensionpresentedby Williams in his MPVO pa-
per. It usesa simple heuristic for the determina-
tion of the additionalfacerelations.This heuristic
is easyto computebut in many casesis not ableto
determinethecorrectsetof relations.TheX-MPVO
algorithmof Silva et al. [15] utilizesa sweepplane
parallelto theviewing planeto processthebound-
ary facesin depthsortedorderandthus is able to
�nd thecorrectrelations.Becauseof theexpensive
sweepplanecalculationsthis methodwaslater im-
proved by Combaet al. [1] who introduceda BSP
tree for the ef�cient computationof the boundary
relations.This methodis calledBSP-XMPVO.

Another fast sorting algorithm for concave
meshesis thesocalledtangentialdistanceor power
sort [6] which requiresthe meshto ful�ll the De-
launaycriterion. Althoughtheasymptoticrun time
complexity is O(nlogn) theaveragerun time com-
plexity is O(n). For mesheswhicharenotDelaunay
meshes,a new meshcanbeconstructedthatful�lls
the Delaunaycriterion. In threedimensions,how-
ever, thisoftenrequirestheadditionof new vertices
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to the dataset, thus the meshtopology cannotbe
preservedin general.

Notethatall thesesortingalgorithmsfor concave
gridsassumethemeshto beacyclic.

6 Convexi�cation of Tetrahedral
Grids

An analysisof currentvisibility sortingalgorithms
shows thatBSP-XMPVO ontheonehandproduces
correct results for all types of meshesexcluding
cyclic meshes. On the other hand it is signi�-
cantlyslower thanMPVO, which fails to sort con-
cave meshes.Cyclic meshescanbe handledwith
the MPVO-C method. An optimal graphsorting
algorithmwould combinethe advantagesof these
methods.

Such an optimal sorting algorithm has already
beenproposedby PeterWilliams [21]. He sug-
gestedto addimaginarycells to a concave dataset
in orderto transformit into a convex mesh,that is
to �ll out the cavities of a dataset with auxiliary
cellssothattheextendedmeshcouldbehandledby
usingtheplainMPVO algorithm.

He also notedthat “The implementationof the
preprocessingmethods[...] for converting a non-
convex meshinto a convex meshcould take a very
signi�cant amountof time; they areby no means
trivial. [...] Therefore,the MPVO algorithm for
nonconvex meshes,whichhasbeenfoundtobeeasy
to implement,may�ll animmediateneeddespiteits
shortcomings”.

Convexi�cation algorithmsareknown from com-
putationalgeometry[4] andarewell studiedin the-
ory. But to our knowledgea convexi�cation algo-
rithm that is easyto implementhasnot yet been
utilized for thepurposeof depthsortinganunstruc-
turedgrid.

In this paperwe implementsucha convexi�ca-
tion algorithm. The key idea is not to try to add
imaginary tetrahedrato the concave data set but
rather to subsequentlybreak up the cavities into
setsof convex polyhedraand treat thesepolyhe-
dra as imaginarycells. For that purposewe com-
bineseveralstandardalgorithmsdealingwith trian-
gle meshesin a new anduniqueway. If the origi-
nal concave meshalsocontainscycleswe canuse
theMPVO-Calgorithmto take careof thecyclesas
outlinedin Section4.

Sincetheruntimeof theMPVO algorithmis lin-
earin termsof thenumberof cells,theperformance
decreaseswith the numberof auxiliary cells. In
practicethenumberof auxiliary polyhedrais small
in comparisonto thetotalnumberof cellssothatthe

sorting performanceis still linear on the average.
This is analyzedin moredetail in Section7.1. In
thefollowing we give analgorithmicdescriptionof
ourproposedtetrahedralconvexi�cation algorithm.

6.1 BasicAlgorithm

Let S be a set of triangles that form the closed
boundarysurfaceof a volume. We assumethat the
normalsof sucha trianglesetpointoutwards.Then
thevolumeis saidto beconcave if theopeningan-
gleat thecommonedgeof two trianglesis lessthan
180� . Thevolumeis saidto beconnectedif all tri-
anglescanbereachedby traveling alongtheedges
of theboundary. With thesede�nitions theconvex-
i�cation of an unstructuredtetrahedralgrid canbe
describedwith the�rst stepasfollows:

1) S0 initially containstheboundaryfacesof the
unstructuredgrid

2) �ip thenormalsof all trianglesin S0
3) addthetrianglesof theconvex hull of thegrid

to S0 with all normalspointingoutwards
4) remove all trianglesfrom S0 thatappeartwice

Now S0 containsthe boundarydescriptionof the
smallestexterior volumethat needsto be addedin
orderto generatea convex mesh(compareleft side
of Figure3). This volumecanbe concave or even
disconnected.If S0 is empty, the tetrahedralmesh
is alreadyconvex andcanbe fed directly into the
MPVO/MPVO-C sortingalgorithm. Alternatively,
we canreplaceSteps3) and4) by just addingthe
facesof a boundingbox (seeright illustration in
Figure3).

exterior
volume

tetrahedral
mesh

boundary
normals

Figure 3: Determining the exterior volume (de-
pictedin light green).Left : minimal volumeusing
convex hull. Right: easysetupwith boundingbox.

As mentionedabove, we do not try to �ll theex-
terior volume with tetrahedrabut we ratherbreak
it up into a setof n convex polyhedraSi ; i = 1::n.
This is achievedby cuttingaway oneconcavity af-
teranotherby usingacombinationof simpleopera-
tionsontrianglemeshes.For eachdetectedconcav-
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ity theexteriorvolumeis split into two sub-volumes
similar to binary spacepartition. This operationis
repeateduntil all sub-volumeshave beensplit into
convex polyhedra:

n = 1; S1 = S0
repeat

if Si is disconnectedfor any i = 1::n
1) separateSi into a connectedcom-

ponent S0
i and the remaining sub-

volumeS00
i

elseif Si is concave
2) choosetriangle T 2 Si so that the

planeP throughT cuts Si into two
non-emptysub-volumesS0

i andS00
i

3) move eachtriangleT 2 Si to its cor-
respondingsub-volume

4) triangulate the intersection of the
cutting planeP with Si andaddthe
resultingtrianglesto bothS0

i andS00
i

endif
n = n+ 1; Si = S0

i ; Sn = S00
i

until Si is convex andconnectedfor i = 1::n

In Step3) the trianglesthat intersectwith the cut-
ting planeP have to besplit andthe resultingsub-
triangleshave to be moved into the corresponding
sub-volumeS0

i or S00
i . Notethatthetetrahedralmesh

is not split at all. Only a boundaryfacemay be
split sothattheDAG hasmultipledependenciesfor
this face(alsocomparebottomright of Figure5).
The intersectionof thecutting planeP with a sub-
volumeSi is a polygonwhich may be concave or
evendisconnected.This polygonhasto betriangu-
latedandaddedto bothsubsetsS0

i andS00
i , sinceoth-

erwisethe sub-volumeswould not be closed. Tri-
angleswhich lie in the cutting planearea special
caseandmustbeaddedto only onesub-volume.To
avoid numericalinstabilitieswe move verticeswith
averysmalldistanceto P ontothecuttingplane,so
that impossiblecuttingcon�gurationscannotoccur
dueto �oating pointerrors.

Thedescribedconvexi�cation algorithmdoesnot
requirecomplex volumetricoperationsbut ratheris
a combinationof well known algorithmsworking
on polygons. In this way the goal of �lling an ar-
bitrarily complex volumewith tetrahedrais broken
down to a numberof well analyzedoperationson
trianglemeshes.To ourknowledgethis speci�c ap-
proachis new in theresearchareaof visibility sort-
ing (also comparerecentresearchon convexi�ca-
tion [2]). In theworstcaseoneiterationof thecut-
ting algorithmis neededfor eachfaceof thebound-

ary. For eachcut the triangulationin Step 4) is
themostexpensive operationwith O(blogb) worst
caserun time and b being the numberof bound-
ary facesin the sub-volume. Therefore,the worst
caserun time for the preprocessingof the tetrahe-
dralmeshis O(b2 logb). In practice,however, each
cutapproximatelyhalvesthenumberof trianglesin
asub-volume.Thus,theaveragepreprocessingtime
is O(blog2b).

6.2 Cutting PlaneSelection

Theruntimeof theMPVO algorithmfor aconvexi-
�ed meshdirectly relatesto thenumberof auxiliary
cells.Soourgoalis tokeepthenumberof generated
auxiliary cellsaslow aspossible.This is achieved
by anappropriateselectionof thecuttingplane.

A �rst approachwould be to selectthe cutting
plane which bisectseachsub-volume. This is a
similar strategy to theconstructionof BSPtreesin
computergames.HeretheBSPperformancerelies
on equalsizedleave nodes,for which thebisection
strategy workswell. In our case,however, thesize
of thenodesis notrelevant,sincethecellsareimag-
inary and thus neednot be rendered. Insteadwe
wanttominimizethetotalnumberof auxiliarycells.

Figure4: Selectionof cuttingplane.Left : badBSP
strategy (no concavity cut away). Middle : elimi-
nationof oneconcavity. Right: eliminationof two
concavities (but total numberof auxiliary cells is
the same,sincethe bottom sub-volume is discon-
nected).

In principle, the cutting planeP shouldbe cho-
sensothatthecorrespondingtriangleT hasat least
oneneighbourwith anopeninganglelessthan180� .
This ensuresthatat leastoneconcavity is cut away
from thesub-volume.Sincethereareusuallymany
trianglesthat ful�ll this condition(seemiddle and
right casein Figure 4), we proposethe following
selectioncriterion.

Thecriterion is basedon thefundamentalobser-
vation that the numberof generatedauxiliary cells
ateachcuttingstepdependsonthenumberof inter-
sectionsof the cutting planewith the sub-volume.
The more intersectionsthe cutting planehaswith
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theboundaryof thesub-volume,themoreauxiliary
cellsaregenerated.

As an example, Figure 5 shows the convexi�-
cation of a simple two-dimensionalobject. After
checkingpossiblecuts we could vote for the hor-
izontal cut on the top right of Figure5 which has
4 intersectionswith the boundary. But then the
smallcell depictedin brightredwouldbegenerated.
This cell is redundant,sinceit doesnot eliminate
any concavity. So we bettervote for the vertical
cut which hasonly 2 intersections.The resulting
left sub-volume is convexi�ed easilyby oneaddi-
tional cut. The right sub-volume requiresanother
two cuts. We can chooseeither of threepossible
cuts,sinceall have thesameintersectioncount.Fi-
nally we have founda convexi�cation consistingof
� veauxiliary cells(bottomright of Figure5).

In contrastto the two-dimensionalexample,the
meshtopology can be more complex in threedi-
mensions. But cuts with few intersectionswith a
sub-volumealsotendto producefew auxiliarycells.
This is not a strict property, sincea seeminglybad
�rst cut may in somecasesenablea bettersecond
cut. The determinationof the bestpossiblecut is
a very expensive optimizationproblem. Therefore
it is infeasiblein practice.Thedescribedselection
heuristic,however, workswell in practiceasshown
in Section7.

In orderto speedup thedeterminationof a good
cutwe just randomlyselectasmall�x ednumberof
candidatesandchoosethebestcut of this group.A
very similar strategy is usedby the BSP-XMPVO
sorting algorithm for the constructionof its BSP
tree.

Cut 3

Figure5: 2D convexi�cation examplewith result-
ing sortinggraph. The light red balls depictcells
with multiple dependenciesfor a face. The gener-
atedauxiliary (imaginary)cells have beenmarked
light green.

Using the describedconvexi�cation approach,
Figure6 shows the convexi�ed Blunt Fin dataset
(S0 was derived from a boundingbox). For this
dataseta singleauxiliary cell is generated.Only
this imaginarycell needsto beaddedto theoriginal
datasetto build a convex mesh.Similarly, thecon-
vexi�cation of the OxygenPost,TaperedCylinder
andHeatSink datasetsonly requiresthe addition
of oneauxiliary cell. Many otherdatasetsencoun-
teredin practicecannotbehandledaseasyasthis,
but theBlunt Fin exampleillustratesthatautomatic
convexi�cation is straight forward in many cases.
Due to thesingleauxiliary cell theperformanceof
theMPVO for theconvexi�ed Blunt Fin is virtually
thesameastheperformanceof theoriginalMPVO-
NC algorithm.

Figure6: In orderto convexify the Blunt Fin data
setonly oneauxiliary cell needsto be added(de-
pictedbelow thewire framemodel).

Figure7 illustratestheprocessof splittingtheex-
teriorvolumeinto convex polyhedra.Thecornersof
thesurroundingboundingboxarecutawayuntil �-
nally alargeimaginarycylinderandimaginarycon-
vex polyhedrabetweenthe teethremain.Notethat
the cylinder needsto be split becausethe quadri-
lateralson its surfacearenonplanarandthushave
concavities.

Figure7: Convexi�cation exampleof a gear:exte-
rior volume(left), wire frameof unprocessedexte-
rior volume(middle),andexteriorvolumesplit into
convex polyhedra.
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7 Implementation

Our implementationof theMPVO algorithmhasa
performanceof about2,1million tetrahedrapersec-
ond on an an Intel Pentium4 processorwith 3,0
GHz.

At theseclock speedsthe sorting algorithm is
mainly memorybound(aspointedout by Witten-
brink). To reducethetraf�c on thememorybuswe
useanindexeddatastructure.Additionally, wealso
utilize anindexednormaldatastructurewhichleads
to aperformanceincreaseof about30-60%depend-
ing on the regularity of the data set (e.g. Blunt
Fin 59% and SPX 31%). Togetherwith an ISSE
enhancedcell projectionalgorithm we achieve an
overallrenderingperformanceof about1,25million
tetrahedraper secondon an NVIDIA GeForceFX
5800graphicsaccelerator.

The Blunt Fin dataset in Figure6 with 224874
tetrahedrarendersat approximately5.5 framesper
second. The performancefor the SPX dataset is
given in Table 8. The �rst row shows the results
of usingtheplainMPVO algorithmwhich is fastest
but doesnotrendertheSPXdatasetcorrectly. With
anincreasingnumberof testedcuttingplanestheto-
tal numberof auxiliarycellsdecreasessigni�cantly
andsodoessortingtime.

MPVO grid cells sorting total
12936 4.1ms 10.8ms

# cuts aux.cells sorting total
1 1562 10.2ms
5 1115 7.8ms
10 1000 7.4ms
20 836 7.0ms 14.4ms

Figure8: Sortingandrenderingtimesfor theSPX
datasetwith 12936tetrahedra(Coolant�o w simu-
lation in theSuperPhoeniXreactor).

Taking the numberof generatedauxiliary cells
into account,the total numberof cells is increased
by only 13%but sortingtime increasesby 70%and
total renderingtime by 33%. The reasonfor this
over-proportionalincreaseis the high irregularity
andthe comparablylarge numberof facesof aux-
iliary cells(7 facesperauxiliarycell on theaverage
for theSPX).

The latest hardware-acceleratedcell projection
algorithms[17, 23] achieve approximately550,000
tetrahedraper secondon a NVIDIA GeForce4ex-
cludingtimesfor sorting.Thiscorrespondsto about
2 framespersecondfor theBlunt Fin datasetusing
a purelyemissive opticalmodel.

Our performance is on par with the latest
hardware-acceleratedraycasterof Weileretal [18].
However, ourperformanceis almostindependentof
the sizeof the viewing window. Additionally, our
proposedconvexi�cation algorithmis not limited to
theapplicationareaof directvolumerenderingbut
couldalsobeusedfor a varietyof tasksin �nite el-
ementsimulations,for example.

7.1 PerformanceAnalysis

The BSP-XMPVO algorithm is the fastestknown
sortingalgorithmfor concave meshesknown today.
Our convexi�cation methodhasa strongaf�nity to
BSP-XMPVO. While the latter usesa BSPtreeon
theboundaryfacesto calculatetheboundaryedges
of thesortinggraph,weuseacuttingstrategy to add
auxiliary cellsat theboundary.

Themaindifferencebetweenthetwo methodsis
not the different partitioning scheme. In fact, the
BSPtreeis just anothermeansof applyingcutting
planesto sub-volumes.Themain difference,how-
ever, is that thecalculationof theboundarydepen-
denciesis performedduringconvexi�cation, which
is a preprocessingstep. Thereforewe do not need
to traversea BSP tree whenever we encountera
boundaryface. In otherwords, the time consum-
ing BSPtraversalis performedimplicitly by build-
ing theadjacency graphfrom theconvexi�ed grid.
Sincethe BSP traversalaccountsfor a large frac-
tion of thesortingtime, we achieve a considerable
speedupin comparisonto BSP-XMPVO.

The penaltyof BSP-XMPVO over MPVO(NC)
is in the rangeof 320-530%asstatedin [1]. The
penalty of the convexi�cation however is below
70% in our tests. In the past the MPVO algo-
rithm hasproven to be the fastestsolutionfor con-
vex meshes.Ourexperimentalresultsshow thatthe
MPVO algorithmis alsothebestoptionfor convex-
i�ed concave meshes.

Due to the similarity of the BSP tree construc-
tion andtheapplicationof thecuttingplaneswecan
deducetheasymptoticrun time of our algorithmas
follows: theruntimeof BSP-XMPVOis O(bp+ n),
whereb is the numberof boundaryfaces,n is the
numberof grid cells,and p is the numberof faces
thatarecut by morethanonefaceof theBSP. The
fact that b is usually below 5% of the total num-
ber of cells,and p is usuallymuchsmallerthanb,
makesBSP-XMPVO linearin termsof n.

The sameargument holds for convexi�cation:
theasymptoticrun time of theMPVO for thecon-
vexi�ed meshis O(a+ n) with a beingthenumber
of auxiliary cells and n being the numberof grid
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cells. Thenumberof auxiliary cells is proportional
to the numberof boundaryfacesb plus the num-
berof auxiliary cellsthatarecut by anothercutting
plane.Sincethelatteronly accountfor a tiny frac-
tionof all cells,theruntimein practiceisessentially
linearin termsof n.

Anotheradvantageof thepresentedconvexi�ca-
tion algorithm is the fact that cyclic meshescan
be handledeasily. The implicit storageof the de-
pendenciesin a BSP-Treemakes it hard to detect
andmanipulatecycles.A convexi�ed sortinggraph,
however, canbecheckedeasily, sincetheboundary
dependenciesarestoredexplicitely by meansof the
auxiliarycells(comparealsoKrauset al. [8]).

8 Tetrahedral Lighting

Once the tetrehadraare sorted they can be cell-
projectedandrendered.In this sectionwe describe
how to improve the visual appearanceof the tetre-
hadra. As statedin the last section,the rendering
performancemainly dependson the sorting time
andthevertex performance.Therefore,thereis no
performancepenaltyin using quiet long fragment
programs. We use this opportunity to introduce
high-qualitytetrahedrallighting. In general,high-
quality renderingof unlit tetrahedrahasbeenintro-
ducedby Gutheet al. [5], but high-qualitylighting
hasnot yet beenappliedin theareaof unstructured
volumerendering.

We adaptthe approachof Meissneret al. [11]
whointroducedambient,diffuseandspecularlight-
ing coef�cients for direct pre-integrated volume
renderingof regularmeshes.In orderto implement
ef�cient lighting for unstructuredmeshes,we have
to take a closerlook at the underlyingscenarioas
illustratedin Figure9.

Sf Sb

l
Gf Gb

L

Figure 9: Eachviewing ray within a tetrahedron
is de�ned by two samplepointsandtwo gradients.
Thescalarvaluesandgradientsareinterpolatedlin-
early.

Sincethe scalarvaluesandthe gradientsarein-
terpolatedlinearlywithin eachtetrahedron,they are
alsolinearalongeachviewing ray. To allow for ef�-
cientpre-integration(see[12] for anintroductionto
pre-integratedcell-projection),we assumethat the
intensityof the light varieslinearly. Thereforethe
light intensityI at positionx of theraysegmentcan
becalculatedas

I (x) = (x�!G f + (1� x)�!Gb) � �!L

� x(�!G f � �!L ) + (1� x)( �!Gb � �!L ):

I (x) cannow besplit into I f (x) = x(�!G f � �!L ) = xI f

andIb(x) = (1� x)( �!Gb � �!L ) = (1� x)Ib. Therayin-
tegralC(x) andits approximationC0(x) for thedif-
fusepartof theemissionarethengivenas

C(x) =

=
Rx

0 e�
Rt

0 r (S(u))duk(S(t)) r (S(t)) I (t)dt

�
Rx
0 e�

Rt
0 r (S(u))duk(S(t)) r (S(t))( I f (t) + Ib(t))dt

= C0(x):

Using the linearity of the integral, the calculation
canbesplit into two integralsthatdonotdependon
thelight intensityalongtheray:

C0(x) =

=
Rx

0 e�
Rt

0 r (S(u))duk(S(t)) r (S(t)) I f (t)dt+
Rx

0 e�
Rt

0 r (S(u))duk(S(t)) r (S(t)) Ib(t)dt

= I f
Rx

0 e�
Rt

0 r (S(u))dutk(S(t)) r (S(t))dt+

Ib
Rx

0 e�
Rt

0 r (S(u))du(1� t)k(S(t)) r (S(t))dt:

With k f (S(t)) = tk(S(t)) and kb(S(t)) = (1 �
t)k(S(t)) , a pre-integration table is able not only
to representthe ambient,but also the diffuse part
of the emissionalong the ray segments. We need
threeseparatetables,i.e. an ambientandtwo dif-
fuse onesfor k f and kb, to reconstructthe color
alongeachray segment. The lighting of the tetra-
hedrais equivalent to usingGouraudshadingon a
per ray segmentbasis.To changetheweightingof
ambientanddiffuselighting, we usedifferentk for
eachof theselighting terms. Figure10 shows the
improved visual perceptionof isosurfacesfor the
Bucky Ball dataset.

Meissneret al. [11] alsoshowed how to imple-
ment a specularhighlight for non-iso-surface-like
transferfunctionsby integratingaweightingcoef�-
cientw for thefront andbackgradients.In addition
their approximationalsoneedsa weightingcoef�-
cients for theintensityof thehighlight. If weadapt
thesameapproachfor tetrahedra,we endup with a
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Figure 10: Bucky Ball and convexi�ed Blunt Fin
datasetwith per-ray lighting. With ambientonly
(left) anddiffuselighting (right).

pre-integrationtablethat contains12 entries,3 for
theintegratedambientcolor, 6 for thediffusecolor,
1 for the integratedopacityand2 for the specular
highlight. These12 valuescaneasilybestoredin 3
RGBA textures.

Although this approachis almosta straightfor-
ward adaptionof [11] we proposethe following
necessarymodi�cations for unstructuredgrids: We
needto accountfor the fact that tetrahedrahave
varying ray segmentlengthl asopposedto texture
basedpre-integratedvolume renderingwhere l is
assumedto beconstant.Sincewedonotwantto re-
computethethree-dimensionalpre-integrationtable
for differentmaximumraysegmentlengthslmax, we
usel0 = 1 � 2� l ratherthan l as a reparametriza-
tion of the third texture coordinate. In fact, this
reparametrizationalso improves accuracy. It is a
known fact that theemissionbecomesalmostcon-
stantfor large l . Thereforewe can representthis
parameterrangewith fewer samplepointsanduse
moresamplepointsfor smallvaluesof l . To further
improve theaccuracy of the integratedopacity, we
do not actuallystoretheopacitybut rathertheinte-
gratedopticaldensityandreconstructtheopacityin
the pixel shader. Thenthe shaderhasto carry out
thefollowing calculations:

1) Computetheperspectively interpolatedscalar
values(Sf andSb), thegradients( ~G f and ~Gb)
andtheraysegmentlengthl .

2) Calculatel0= 1� 2� l .
3) Lookupall threepre-integrationtablesatposi-

tion (Sf , Sb, l0).

4) Performdiffuselighting of front andbackgra-
dient(I f = ~G f �~L andIb = ~Gb �~L).

5) Calculaterepresentative gradientfor specular
highlight ~Gspec= w ~G f + (1� w) ~Gb.

6) Calculatehighlight Ispec= s( ~Gspec�~L)p.
7) Reconstructopacity from integrated optical

density.
8) Add all colorsandblendwith framebuffer.

With this approachthe specularhighlight is repro-
ducedcorrectly over multiple opaqueiso-surfaces
within a singletetrahedronandis approximatedef-
�ciently for semi-transparenttransferfunctionsas
seenin Figure11. In orderto further increasethe
accuracy of both diffuse lighting and the specular
highlight, additionalsampleson eachray segment
canbeused.Theresultingimagequickly converges
to thecorrectsolution,sofour samplesperrayseg-
mentareusuallysuf�cient. A largernumberof sam-
plessigni�cantly lowersthe�ll rate.

Figure 11: Specularhighlight on opaqueisosur-
faceswithin a single tetrahedron(left), approxi-
mationfor a semi-transparentsetting(middle) and
“correct” solution with four samplesper ray seg-
ment(right).

9 Conclusions

We have describedan ef�cient convexi�cation al-
gorithm for the purposeof visibility sorting arbi-
trary unstructuredvolumetricgrids. We proposed
aneasyto implementconvexi�cation algorithmby
reducingthe complex geometricaloperationsto a
sequenceof operationsontrianglemeshes.Weused
this methodto transferconcave (andnot necessar-
ily acyclic grids) into convex mesheswhich canbe
sortedef�ciently with the plain MPVO/MPVO-C
algorithm. As a result,our methodis two to three
times faster than the fastestknown sorting tech-
nique,the BSP-XMPVO algorithm. Our approach
is on par with the latesthardware-acceleratedray
castingalgorithmbut our performanceis indepen-
dentof thewindow size.Finally, wealsoaddressed
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the high-quality reconstructionof the ray integral
usingthepre-integratedlighting technique.
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11 Additional Material

For the convenienceof the reader, we provide a
movie which illustratestheconvexi�cation process
for two interleaving gears. In eachframethe cut-
ting operationwith the lowestintersectioncountis
performed.Imaginarycellsoutsidetheconvex hull
of thedatasetarediscarded.
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