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ABSTRACT

Unstructuredtetrahedralgrids are a commondata
representatiorof three-dimensionabkcalar elds.
For corvex unstructuredneshesf cient rendering
methodsareknown. For concae or cyclic meshes,
however, a signi cant overheadis requiredto sort
the grid cells in backto front order In this pa-
per we apply methodsknowvn from computational
geometryto transformconcae into convex grids.
While this issuehasbeenstudiedin theoryit has
notyet beenappliedto the speci ¢ areaof unstruc-
turedvolumerendering. This is mainly dueto the
compleity of the requiredgeometricalbperations.
We demonstrat¢éhatthe corvexi cation of concae
grids can be achieved by a combinationof sim-
ple operationson triangle meshes For corvexi ed
mesheghe experimentalresultsshav thatthe per
formancepenaltyis only about70% in compari-
sonto approximately300% for the fastestknown
concae sorting algorithm. In order to achieve
high-quality visualizationswe also adaptthe pre-
integratedlighting techniqueto cell projection.
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1 Motivation and Related Work

Consideringthe functional range of graphicsli-

brariedike OpenGLit is obviousthatthesdibraries
have a rich tool setfor manipulationand rendef
ing of trianglemeshes On the otherhand,tetrahe-
dral mesheswhich arethethree-dimensionatoun-
terpartof trianglemesheshave very little support.
However, if a volumetric primitive were available
right out of the box, directvolumevisualizationof
unstructuredgrids would be straightforward. To
achieve this goal, King et al. [7] have proposeda
dedicatedgraphicshardware architecture but un-
fortunately the architecturehas not beenrealized
yet. Ef cient sweepplanealgorithmsfor unstruc-
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tureddataarewell established14, 3], but currently
the bestsuitedmethodfor dealingwith volumetric
renderingprimitivesis theprojectedetrahedrgPT)
algorithmof Shirley andTuchman(13].

Recently a competinghardware-acceleratedp-
proachhas beenpresentedby Weiler et al. [18].
They proposeda hardware-accelerateday caster
While thisis apromisingapproachit currentlyhas
severaldravbacks.Firstthe availabletexturemem-
ory limits the maximumnumberof cells that can
beray cast. Secondlyray castingis a screerspace
methodasopposedo thePT algorithm,whichis an
object-spacemethod. Finally, the performanceof
a hardware-acceleratedhy castermayincreasesig-
ni cantly with future graphicscardsbut right now
its performances in fact still lower thanthoseof
actualoptimizedimplementationof the PT algo-
rithm.

ThePT algorithmrequireshe cellsof thegrid to
besortedin abackto front fashion.This procedure
is known asvisibility or depthsorting, which Wit-
tenbrink[22] pointsout, is the mainlimiting factor
of the PT algorithm. In thefollowing we shav how
to remedythis mainde ciency of the PT algorithm.
By introducingan ef cient visibility sortingalgo-
rithm we gaina signi cant performanceadvantage.

A readeirfamiliarwith thetopic of visibility sort-
ing may skip the introductionin the following sec-
tion andmayjump directly to Section3.

2 The PT Algorithm

The cell projectionalgorithmof Shirley and Tuch-
man is commonly called the projectedtetrahedra
(PT)algorithm. It takesa scalarvolumeconstructed
from tetrahedraas input, and composeshe pro-
jectedtetrahedrakells in a backto front fashion.
The footprint of eachprojectedtetrahedroreither
consistsof threeor four trianglescenteredaround
the “thick vertex” of the tetrahedrorasillustrated
in Figurel.

The volumetric primitive of a tetrahedronis
transferrednto a triangularrepresentatiothat can
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Figure 1: Classi cation of non-dgeneratedpro-
jectedtetrahedratop row) and the corresponding
decomposition(bottom row) accordingto Shirley
andTuchman13].

be renderedefciently by the graphicshardware.
This explainsthe popularityof the algorithm,since
its performancedirectly relatesto the number of
cellsin the dataset. In contrastto ray castingand
sweepplanemethodghe performanceés almostin-
dependenof the sizeof the viewing window.

In recentyearstheoriginalapproacthasbeenex-
tendedin numerousways andis still underactive
research.The rst improvementwas presentedy
Steinetal. [16]. They useda moreaccuratesxpo-
nentialinterpolationof opacitiesinsidethetetrahe-
drainsteadof thelinearapproximatiorof the origi-
nalapproach.

In principle, the colorsandopacitiesassignedo
thetetrahedratiecompositiorcorrespondo theline
integral alongthe intersectionof eachviewing ray
with thetetrahedronUsingthe volumedensityop-
tical modelof Williams [19, 10], thecompleity of
theline integraldepend®nthetransferfunctionsof
the opticalmodel.

The line integral can be solved analytically for
the specialcaseof a linear transferfunction. Later
thiswasextendedor pieceviselineartransferfunc-
tionsin theHIAC systen{20]. For arbitrarytransfer
functions, however, a numericalintegration of the
transferfunctionis necessaryWhile the numerical
integrationcannotbe performedon the y , theline
integral canbe pre-compute@ndstoredin athree-
dimensionalookup table. This approachis called
pre-integratedcell projection[12, 9].

Most recently the increasingprogrammability
of the graphicshardware haslead to further im-
provementsThelargesizeof thethree-dimensional
pre-intgyration table preventedthe use of a high-

resolutiontransferfunction. This dravbackwasre-
solved by a polynomial reconstructiorof the pre-
integration table in the pixel shaderof modern
graphicsaccelerator§5]. Usingthis approactonly
the coefcients for the Lagrangianpolynomial ap-
proximationof the line integral needto be stored
insteadof the memory consumingpre-inteyration
tableitself.

Usingthe increasingcapabilitiesof graphicsac-
celeratorghe decompositiorof the tetrahedranto
trianglescanalsobeperformedn thevertex shader
This is called hardware-acceleratedell projec-
tion [17, 23]. Although this approachdoesnot yet
leadto a signi cant performanceainit is expected
thatgraphicsacceleratorsf thenext generatiorwill
be muchmoreefcient. Thenthe renderingspeed
primarily doesnot dependon the performanceof
thecell projection,but ratheron the speedoy which
the CPUis ableto feedthe GPU over the AGP or
PCI-Expresdus.

Sincethetetrahedranustbeprocesseth asorted
order thatis usuallyin a backto front fashion,the
overall systemperformancewill be determinecby
the ef ciency of thevisibility sortingalgorithmand
the speedof the datatransferover the bus. Witten-
brink [22] pointsout thata read-write-reaaycle of
thetetrahedras mandatoryfor visibility sortingand
concludeghatthe memoryaccessequiredfor each
tetrahedroris the mainlimiting factorof the PT al-
gorithm.

Therefore,our prime goalin this paperis to de-
vise a visibility sorting algorithm that keepspace
with thegrowing speedf thegraphicsaccelerators.
Forthispurposewe rst give abrief suney of exist-
ing visibility sortingmethodsanddiscusstheir ad-
vantagesndtheir limitations.

3 Visibility Sorting

By de nition an unstructuredetrahedralgrid is a
collectionof tetrahedrawhereit is assumedhatthe
intersectionof two tetrahedrds eitherempty or a
commonface. An unstructuredyrid is saidto be
corvex, if the faceswhich are not sharedbetween
two tetrahedrdorm the corvex hull of thedataset.
This de nition of a convex grid excludesboth the
disconnectiity of the datasetandthe existenceof
cavities.

Thetaskof visibility sortingis closelyrelatedto
graphtheory:for acorvex grid thesetof tetrahedral
pairs(A,B) with acommonfacede ne theedgeof
a directedgraph. The direction of eachedgede-
terminesthe 'behind' relationship,thatis whether
or not cell A occludescell B. The direction of the

666



edgecanbe determinedjuickly by computingthe
dot productof the viewing directionwith the nor-
mal of thecommonface.

The directedgraphimposesan orderingon the
set of tetrahedrawhich is saidto be the visibility
or depthordering. If the directedgraphis agyclic
(DAG) thenthe orderingis total but it neednot be
unique.

Thewell knovn MPVO algorithmof Williams et
al. [21] computesa visibility orderingfor a convex
grid by traversingthe DAG: when&erthealgorithm
encounters cell which doesnot occludeurvisited
neighbourst outputsthecell, otherwiseit traverses
the graphin thedirectionof theedges.In this fash-
ion a depthsortedlist of tetrahedrés constructed
for eachspeci c point of view.

The costof the MPVO algorithmis equalto the
costof adepth- rst or breadth- rstgraphtraversal,
sothattheruntime compleity is linearin termsof
thenumberof cells.

4 Treatmentof Cycles

It hasto be mentionedthatin the majority of cases
the sortinggraphwill be a DAG. However, a cycle
may occur quite easily For examplea gearwith
slantedeethmayhave acycle: whenlooking along
theaxisof thegeartheteethmayoccludeeachother
in acyclic way (seealsoWilliams etal. [21]).

In the caseof a cyclic graphary graphsorting
algorithmwill fail, but we still have two optionsto
proceed. The rst optionis to cut the cycle apart
by selectinganappropriatecutting plane. Thisis a
dif cult taskevenfor simplecycles.A betteroption
is to usethe MPVO-C algorithmof Krausetal. [8].

This algorithm can handlearbitrary meshesn-
cluding cyclic mesheswithout the needof sorting,
but hasquadraticrun time in contrastto the linear
runtime of theMPVO algorithm. TheMPVO-C al-
gorithmis the three-dimensionahnalogueto Sry-
derandLengyels algorithmof renderingeyclic tri-
angles.

Sincethe run time is quadraticwe needto use
MPVO-C asa fall-backsolution. In the casethat
thevisibility sortingalgorithmhasdetectedh cycle
we useMPVO-C to renderthe smallgroupof cells
that causethe cycle. In combinationwith MPVO
the detectionof a cycle andtheidenti cation of its
cellsis straightforwardusingstandardyraphtheory
anddoesnotincreaseheruntime compleity of the
MPVO algorithm(alsocomparg8]).

If acycleis detectecdbnthe y , the MPVO-C al-
gorithm is triggeredfor the setof cells that form
the cycle. Sincetheseusually only make up for a

tiny fraction of the entire dataset, the worst case
runtime compleity is quadraticout theaveragerun
time compleity is still linear

5 Visibility Sorting of Concave Grids

Concae or disconnectedyrids cannotbe handled
correctlyby the MPVO algorithmsincethe behind
relationsare not de ned for the boundaryfaces.
This factis illustratedin Figure 2 which showvs a

gearrenderedvith correctorderingandadifference
imageshaving theartifactsproducedy the MPVO

algorithm. A straightforwardsolutionfor this prob-

lemis simply to addthe missingrelationsbetween
theboundaryfacesto the DAG.

Figure2: Artif actsproducedby incorrectvisibility
orderingusingthe MPVO algorithm(correctimage
ontheleft anddifferenceimageon theright).

Severalalgorithmsareknown which computethe
missingrelations. The MPVO-NC algorithmis an
extensionpresentedy Williams in his MPVO pa-
per It usesa simple heuristicfor the determina-
tion of the additionalfacerelations. This heuristic
is easyto computebut in mary caseds not ableto
determinghecorrectsetof relations. TheX-MPVO
algorithmof Silvaetal. [15] utilizesa sweepplane
parallelto the viewing planeto procesghe bound-
ary facesin depthsortedorderandthusis ableto

nd thecorrectrelations.Becausef the expensve

sweepplanecalculationghis methodwaslaterim-

proved by Combaet al. [1] who introduceda BSP
tree for the ef cient computationof the boundary
relations.This methodis calledBSP-XMPVO.

Another fast sorting algorithm for concae
meshess the socalledtangentiadistanceor power
sort [6] which requiresthe meshto ful Il the De-
launaycriterion. Althoughthe asymptoticrun time
compleity is O(nlogn) the averagerun time com-
plexity is O(n). For meshesvhicharenotDelaunay
meshesa nev meshcanbe constructedhatful lls
the Delaunaycriterion. In threedimensionshow-
ever, this oftenrequiregheadditionof new vertices
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to the dataset, thus the meshtopology cannotbe
preseredin general.

Notethatall thesesortingalgorithmsfor concae
gridsassumehe meshto beagyclic.

6 Convexi cation of Tetrahedral

Grids

An analysisof currentvisibility sortingalgorithms
shavs thatBSP-XMPWO ontheonehandproduces
correctresultsfor all types of meshesexcluding
cyclic meshes. On the other handit is signi -
cantly slover thanMPVO, which fails to sortcon-
cave meshes.Cyclic meshesan be handledwith
the MPVO-C method. An optimal graph sorting
algorithmwould combinethe adwantagesof these
methods.

Such an optimal sorting algorithm has already
beenproposedby PeterWilliams [21]. He sug-
gestedo addimaginarycellsto a concae dataset
in orderto transformit into a corvex mesh,thatis
to Il out the cavities of a datasetwith auxiliary
cellssothatthe extendedneshcouldbehandledby
usingthe plain MPVO algorithm.

He also notedthat “The implementationof the
preprocessingnethods[...] for corverting a non-
corvex meshinto a corvex meshcouldtake a very
signi cant amountof time; they are by no means
trivial. [...] Therefore,the MPVO algorithm for
noncowex mesheswhichhasbeernfoundtobeeasy
toimplementmay Il animmediateneeddespitéts
shortcomings”.

Corvexi cation algorithmsareknown from com-
putationalgeometry4] andarewell studiedin the-
ory. But to our knowledgea corvexi cation algo-
rithm thatis easyto implementhas not yet been
utilized for the purposeof depthsortinganunstruc-
turedgrid.

In this paperwe implementsucha cornvexi ca-
tion algorithm. The key ideais not to try to add
imaginary tetrahedrato the concae data set but
ratherto subsequentiybreak up the cavities into
setsof corvex polyhedraand treat thesepolyhe-
draasimaginarycells. For that purposewe com-
bine several standaraalgorithmsdealingwith trian-
gle meshesn a newv anduniqueway. If the origi-
nal concae meshalso containscycleswe canuse
theMPVO-C algorithmto take careof thecyclesas
outlinedin Section4.

Sincetheruntime of the MPVO algorithmis lin-
earin termsof thenumberof cells,theperformance
decreasesvith the numberof auxiliary cells. In
practicethe numberof auxiliary polyhedrais small
in comparisorto thetotalnumberof cellssothatthe

sorting performances still linear on the average.
This is analyzedin more detail in Section7.1. In
thefollowing we give analgorithmicdescriptionof
our proposedetrahedratonvexi cation algorithm.

6.1 BasicAlgorithm

Let S be a set of trianglesthat form the closed
boundarysurfaceof a volume. We assumehatthe
normalsof suchatrianglesetpoint outwards.Then
the volumeis saidto be concae if the openingan-
gle atthecommonedgeof two trianglesis lessthan
180 . Thevolumeis saidto be connectedf all tri-
anglescanbe reachedyy traveling alongthe edges
of theboundary With thesede nitions the corvex-
i cation of anunstructuredetrahedralyrid canbe
describedvith the rst stepasfollows:

1) & initially containsthe boundaryfacesof the
unstructuredyrid

2) ip thenormalsof all trianglesin &

3) addthetrianglesof the corvex hull of thegrid
to § with all normalspointing outwards

4) remove all trianglesfrom & thatappeatwice

Now & containsthe boundarydescriptionof the
smallestexterior volumethat needsto be addedin
orderto generatea cornvex mesh(compardeft side
of Figure 3). This volumecanbe concae or even
disconnectedlf & is empty the tetrahedraimesh
is alreadycorvex and canbe fed directly into the
MPVO/MPVO-C sorting algorithm. Alternatively,
we canreplaceSteps3) and4) by just addingthe
facesof a boundingbox (seeright illustration in
Figure3).

‘m " volume
tetrahedral

7 mesh T

~-...._boundary

normals

Figure 3: Determiningthe exterior volume (de-
pictedin light green).Left: minimal volumeusing
convex hull. Right: easysetupwith boundingbox.

As mentionedabore, we donottry to Il theex-
terior volume with tetrahedrabut we ratherbreak
it up into a setof n corvex polyhedraS;i = 1::n.
This is achieved by cuttingaway oneconcaity af-
teranotherby usingacombinationof simpleopera-
tionsontrianglemeshesFor eachdetectecdconca-
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ity theexteriorvolumeis splitinto two sub-wlumes
similar to binary spacepartition. This operationis
repeatedintil all sub-wlumeshave beensplit into
corvex polyhedra:

n=1 =%
repeat
if § isdisconnectedor aryi= 1::n
1) separateS into a connectedcom-
ponent §° and the remaining sub-
volume
elseif § is concae
2) choosetriangle T 2 S so that the
planeP throughT cuts§ into two
non-emptysub-wlumesS’andS°
3) move eachtriangleT 2 S toits cor-
respondingsub-wlume
4) triangulate the intersectionof the
cutting planeP with § andaddthe
resultingtrianglesto both S and°
endif
n= n+]_; S':sl, S"I: §O

until § is corvex andconnectedor i = 1::n

In Step3) the trianglesthatintersectwith the cut-
ting planeP have to be split andthe resultingsub-
triangleshave to be moved into the corresponding
sub-wlumeSPor 2 Notethatthetetrahedramesh
is not split at all. Only a boundaryface may be
split sothatthe DAG hasmultiple dependenciefor
this face (alsocomparebottomright of Figure5).
The intersectionof the cutting planeP with a sub-
volume § is a polygonwhich may be concae or
evendisconnectedThis polygonhasto betriangu-
latedandaddedo bothsubsets?andS" sinceoth-
erwisethe sub-wlumeswould not be closed. Tri-
angleswhich lie in the cutting planeare a special
caseandmustbeaddedo only onesub-wlume.To
avoid numericalinstabilitieswe move verticeswith
avery smalldistanceo P ontothe cuttingplane,so
thatimpossiblecutting con gurationscannotoccur
dueto oating pointerrors.

Thedescribeatorvexi cation algorithmdoesnot
requirecomplex volumetricoperationsout ratheris
a combinationof well knovn algorithmsworking
on polygons. In this way the goal of lling anar-
bitrarily complex volumewith tetrahedras broken
down to a numberof well analyzedoperationson
trianglemeshesTo our knowledgethis speci ¢ ap-
proachis new in theresearctareaof visibility sort-
ing (also comparerecentresearchon corvexi ca-
tion [2]). In theworstcaseoneiterationof the cut-
ting algorithmis neededor eachfaceof thebound-

ary. For eachcut the triangulationin Step4) is

the mostexpensve operationwith O(blogb) worst
caserun time and b being the numberof bound-
ary facesin the sub-wlume. Therefore,the worst
caserun time for the preprocessingf the tetrahe-
dral meshis O(b2logb). In practice however, each
cutapproximatelyhalvesthe numberof trianglesin

asub-wlume. Thus,theaveragepreprocessingme
is O(blog?h).

6.2 Cutting Plane Selection

Theruntime of the MPVO algorithmfor a cornvexi-
ed meshdirectly relateso thenumberof auxiliary
cells. Soourgoalis to keepthenumberof generated
auxiliary cellsaslow aspossible.This is achiered
by anappropriateselectionof the cuttingplane.

A rst approachwould be to selectthe cutting
plane which bisectseachsub-wlume. This is a
similar strateyy to the constructionof BSPtreesin
computergames.Herethe BSPperformanceelies
on equalsizedleave nodes for which the bisection
stratgly works well. In our case however, the size
of thenodesds notrelevant,sincethecellsareimag-
inary and thus neednot be rendered. Insteadwe
wantto minimizethetotalnumberof auxiliary cells.

NZATNZATAN
Figure4: Selectionof cuttingplane.Left: badBSP
stratgyy (no concaity cut avay). Middle: elimi-
nationof oneconcaity. Right: eliminationof two
concaities (but total numberof auxiliary cells is

the same,sincethe bottom sub-wlume s discon-
nected).

In principle, the cutting planeP shouldbe cho-
sensothatthe correspondingriangle T hasat least
oneneighboumwith anopeninganglelessthan180 .
This ensureghatat leastoneconcaity is cut away
from the sub-wlume. Sincethereareusuallymary
trianglesthatful Il this condition (seemiddle and
right casein Figure 4), we proposethe following
selectiorcriterion.

Thecriterionis basedon the fundamentabbser
vation thatthe numberof generatedauxiliary cells
ateachcuttingstepdepend®n thenumberof inter-
sectionsof the cutting planewith the sub-wlume.
The more intersectionghe cutting plane haswith
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theboundaryof the sub-wlume,the moreauxiliary
cellsaregenerated.

As an example, Figure 5 shawvs the convexi -
cation of a simple two-dimensionalobject. After
checkingpossiblecuts we could vote for the hor-
izontal cut on the top right of Figure 5 which has
4 intersectionswith the boundary But then the

smallcelldepictedn brightredwouldbegenerated.

This cell is redundantsinceit doesnot eliminate
ary concaity. So we bettervote for the vertical
cut which hasonly 2 intersections. The resulting
left sub-wlumeis corvexi ed easilyby oneaddi-
tional cut. The right sub-wlume requiresanother
two cuts. We can chooseeither of three possible
cuts,sinceall have the sameintersectiorcount. Fi-
nally we have founda convexi cation consistingof
ve auxiliary cells (bottomright of Figure5).

In contrastto the two-dimensionakxample,the
meshtopology can be more complec in threedi-
mensions. But cutswith few intersectionswith a
sub-wlumealsotendto producefew auxiliarycells.
This is not a strict property sincea seeminglybad
rst cut mayin somecasesenablea bettersecond
cut. The determinatiorof the bestpossiblecut is
a very expensve optimizationproblem. Therefore
it is infeasiblein practice. The describedselection
heuristic,however, workswell in practiceasshavn
in Section?.

In orderto speedup the determinatiorof a good
cutwejustrandomlyselectasmall x ednumberof
candidatesndchoosethe bestcut of this group. A
very similar stratgy is usedby the BSP-XMPVO
sorting algorithm for the constructionof its BSP
tree.

Figure5: 2D corvexi cation examplewith result-
ing sortinggraph. The light red balls depictcells
with multiple dependenciefor a face. The gener
atedauxiliary (imaginary)cells have beenmarked
light green.

Using the describedcorvexi cation approach,
Figure 6 shavs the corvexi ed Blunt Fin dataset
(S was derived from a boundingbox). For this
dataseta single auxiliary cell is generated.Only
thisimaginarycell needdo beaddedo theoriginal
datasetto build a corvex mesh.Similarly, the con-
vexi cation of the OxygenPost, TaperedCylinder
and Heat Sink datasetsonly requiresthe addition
of oneauxiliary cell. Marny otherdatasetsencoun-
teredin practicecannotbe handledaseasyasthis,
but the Blunt Fin exampleillustratesthatautomatic
convexi cation is straightforward in mary cases.
Dueto the singleauxiliary cell the performanceof
the MPVO for thecorvexi ed Blunt Finis virtually
thesameastheperformancef theoriginal MPVO-
NC algorithm.

Figure6: In orderto corvexify the Blunt Fin data
setonly one auxiliary cell needsto be added(de-
pictedbelov thewire framemodel).

Figure7 illustratesthe procesf splitting theex-
teriorvolumeinto corvex polyhedra.Thecornersof
thesurroundingooundingbox arecut away until -
nally alargeimaginarycylinderandimaginarycon-
vex polyhedrabetweerthe teethremain. Note that
the cylinder needsto be split becausehe quadri-
lateralson its surfaceare nonplanarandthus have
concaities.

Figure7: Convexi cation exampleof a gear: exte-
rior volume(left), wire frameof unprocesseexte-
rior volume(middle),andexterior volumesplitinto
convex polyhedra.
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7 Implementation

Our implementatiorof the MPVO algorithmhasa
performancef about2, 1 million tetrahedrgersec-
ond on an an Intel Pentium4 processomith 3,0
GHz.

At theseclock speedsthe sorting algorithm is
mainly memorybound(as pointedout by Witten-
brink). To reducethetrafc onthe memorybuswe
useanindexeddatastructure Additionally, we also
utilize anindexednormaldatastructurewhich leads
to a performanceéncreasenf about30-60%depend-
ing on the regularity of the dataset (e.g. Blunt
Fin 59% and SPX 31%). Togetherwith an ISSE
enhancectell projectionalgorithm we achiee an
overallrenderingperformancef aboutl,25million
tetrahedrgper secondon an NVIDIA GeForce FX
5800graphicsaccelerator

The Blunt Fin datasetin Figure6 with 224874
tetrahedraendersat approximately5.5 framesper
second. The performanceor the SPX datasetis
givenin Table8. The rst row shaws the results
of usingtheplain MPVO algorithmwhichis fastest
but doesnotrenderthe SPXdatasetcorrectly With
anincreasinghumberof testectuttingplanegheto-
tal numberof auxiliary cellsdecreasesigni cantly
andsodoessortingtime.

MPVO | gridcells | sorting total
12936 4.1ms | 10.8ms
#cuts | aux.cells | sorting total
1 1562 10.2ms
5 1115 7.8ms
10 1000 7.4ms
20 836 7.0ms | 14.4ms

Figure8: Sortingandrenderingtimesfor the SPX
datasetwith 12936tetrahedrgCoolant o w simu-
lationin the SuperPhoeniXreactor).

Taking the numberof generatedauxiliary cells
into accountthe total numberof cellsis increased
by only 13% but sortingtime increasedy 70%and
total renderingtime by 33%. The reasonfor this
over-proportionalincreaseis the high irregularity
andthe comparablylarge numberof facesof aux-
iliary cells(7 facesperauxiliary cell ontheaverage
for the SPX).

The latest hardware-acceleratedell projection
algorithmg[17, 23] achiere approximately550,000
tetrahedrgper secondon a NVIDIA GeForce4ex-
cludingtimesfor sorting. This correspond$o about
2 framespersecondor the Blunt Fin datasetusing
apurelyemissve opticalmodel.

Our performanceis on par with the latest
hardware-acceleratehy casterof Weileretal [18].
However, our performances almostindependenof
the size of the viewing window. Additionally, our
proposectonvexi cation algorithmis notlimited to
the applicationareaof directvolumerenderingbut
couldalsobe usedfor a variety of tasksin nite el-
ementsimulationsfor example.

7.1 PerformanceAnalysis

The BSP-XMP\O algorithmis the fastestknovn
sortingalgorithmfor concae meshe«nown today
Our corvexi cation methodhasa strongaf nity to
BSP-XMPVO. While the latter usesa BSPtreeon
theboundaryfacesto calculatethe boundaryedges
of thesortinggraph,we usea cuttingstratey to add
auxiliary cellsattheboundary

Themaindifferencebetweerthetwo methodss
not the different partitioning scheme. In fact, the
BSPtreeis just anothermeansof applying cutting
planesto sub-wlumes. The main difference how-
ever, is thatthe calculationof the boundarydepen-
dencieds performedduring corvexi cation, which
is a preprocessingtep. Thereforewe do not need
to traversea BSP tree when&er we encountera
boundaryface. In otherwords, the time consum-
ing BSPtraversalis performedimplicitly by build-
ing the adjaceng graphfrom the corvexi ed grid.
Sincethe BSP traversalaccountsfor a large frac-
tion of the sortingtime, we achieve a considerable
speedupn comparisorto BSP-XMP\VO.

The penalty of BSP-XMPWO over MPVO(NC)
is in the rangeof 320-530%as statedin [1]. The
penalty of the corvexi cation however is belav
70% in our tests. In the pastthe MPVO algo-
rithm hasprovento be the fastesisolutionfor con-
vex meshesOur experimentakesultsshav thatthe
MPVO algorithmis alsothe bestoptionfor convex-

i ed concae meshes.

Due to the similarity of the BSP tree construc-
tion andtheapplicationof thecuttingplaneswve can
deducehe asymptoticrun time of our algorithmas
follows: theruntime of BSP-XMPVOis O(bp+ n),
whereb is the numberof boundaryfaces,n is the
numberof grid cells, and p is the numberof faces
thatarecut by morethanonefaceof the BSP The
factthatb is usually belov 5% of the total num-
ber of cells,and p is usuallymuchsmallerthanb,
makesBSP-XMP\O linearin termsof n.

The sameargumentholds for corvexi cation:
the asymptoticrun time of the MPVO for the con-
vexi ed meshis O(a+ n) with a beingthe number
of auxiliary cells and n being the numberof grid
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cells. Thenumberof auxiliary cellsis proportional
to the numberof boundaryfacesb plus the num-

berof auxiliary cellsthatarecut by anothercutting

plane. Sincethe latter only accountfor atiny frac-

tion of all cells,theruntimein practiceis essentially
linearin termsof n.

Anotheradwantageof the presentedorvexi ca-
tion algorithm is the fact that cyclic meshescan
be handledeasily The implicit storageof the de-
pendenciesn a BSP-Treemalesit hardto detect
andmanipulatecycles. A corvexi ed sortinggraph,
however, canbe checled easily sincethe boundary
dependenciearestoredexplicitely by meansof the
auxiliary cells(comparealsoKrausetal. [8]).

8 Tetrahedral Lighting

Once the tetrehadraare sortedthey can be cell-
projectedandrendered.n this sectionwe describe
how to improve the visual appearancef the tetre-
hadra. As statedin the last section,the rendering
performancemainly dependson the sorting time
andthe vertex performance.Therefore thereis no
performancepenaltyin using quiet long fragment
programs. We use this opportunity to introduce
high-quality tetrahedralighting. In general high-
quality renderingof unlit tetrahedrdasbeenintro-
ducedby Gutheetal. [5], but high-qualitylighting
hasnotyetbeenappliedin the areaof unstructured
volumerendering.

We adaptthe approachof Meissneret al. [11]
whointroducedambientdiffuseandspeculatight-
ing coefcients for direct pre-integrated volume
renderingof regularmeshesin orderto implement
efcient lighting for unstructurednesheswe have
to take a closerlook at the underlyingscenarioas
illustratedin Figure9.

_
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Figure 9: Eachviewing ray within a tetrahedron
is de ned by two samplepointsandtwo gradients.
Thescalarvaluesandgradientsareinterpolatedin-
early

Sincethe scalarvaluesandthe gradientsarein-
terpolatedinearly within eachtetrahedronthey are
alsolinearalongeachviewing ray. To allow for ef -
cientpre-intgration(see[12] for anintroductionto
pre-integgratedcell-projection),we assumehat the
intensity of the light varieslinearly. Thereforethe
light intensityl atpositionx of theray segmentcan
becalculatedas

0 = G+ Wop L

x(Gy L)+ (@ 0(Gp L):

I
1(x) cannow bespllitintlo I+ () = X(Gf !L) = xlg
andlp(X)= (1 X)(Gp L)=(1 X)lp. Therayin-
tegral C(x) andits approximatiorC{x) for the dif-
fusepartof theemissionarethengivenas

A C(x) =
= Rxe Tsrswdu(s(y)r (S(t) 1 (1)t

Roxe S (s dug 50ty r (SO)(11(1) + (D) ch
= Cc%x):

Using the linearity of the integral, the calculation
canbesplitinto two integralsthatdo notdependn
thelight intensityalongtheray:

Cx) =
Rt
= Rxe SrEWd sy (s() 1 (+
R Ry
Je o (W () r (1)) Ip(t)dt
R Ry
=1 ge or (SW)du(S() r (S(t)) dt+
R Ry
lp de of (WL tyk(S()r (S(1))c:

With k¢(St)) = tk(S(t)) and kp((t)) = (1
t)k(S(t)), a pre-intgyration table is able not only
to representhe ambient,but also the diffuse part
of the emissionalongthe ray sggments. We need
threeseparatdables,i.e. anambientandtwo dif-
fuse onesfor k¢ andky, to reconstructthe color
alongeachray segment. The lighting of the tetra-
hedrais equivalentto using Gouraudshadingon a
perray sggmentbasis. To changethe weighting of
ambientanddiffuselighting, we usedifferentk for
eachof theselighting terms. Figure 10 shaws the
improved visual perceptionof isosurficesfor the
Bucky Ball dataset.

Meissneret al. [11] alsoshaved how to imple-
ment a specularhighlight for non-iso-surdice-like
transferfunctionsby integratinga weightingcoef-
cientw for thefront andbackgradientsln addition
their approximationalso needsa weighting coef-
cientsfor theintensityof the highlight. If we adapt
the sameapproacHor tetrahedraye endup with a
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Figure 10: Bucky Ball and convexi ed Blunt Fin
datasetwith perray lighting. With ambientonly
(left) anddiffuselighting (right).

pre-integrationtable that contains12 entries,3 for
theintegratedambientcolor, 6 for thediffusecolor,
1 for the integratedopacity and 2 for the specular
highlight. Thesel2 valuescaneasilybe storedin 3
RGBA textures.

Although this approachs almosta straightfor-
ward adaptionof [11] we proposethe following
necessarynodi cationsfor unstructuredyrids: We
needto accountfor the fact that tetrahedrahave
varyingray segmentlengthl asopposedo texture
basedpre-integratedvolume renderingwherel is
assumedo beconstantSincewe do notwantto re-
computehethree-dimensiongire-inteyrationtable
for differentmaximumray segmentiengthd yax we
usel®= 1 2! ratherthan! asa reparametriza-
tion of the third texture coordinate. In fact, this
reparametrizatioralso improves accurag. It is a
known factthatthe emissionbecomesalmostcon-
stantfor largel. Thereforewe canrepresenthis
parameterangewith fewer samplepointsanduse
moresamplepointsfor smallvaluesof |. To further
improve the accurayg of the integratedopacity we
do not actuallystorethe opacitybut ratherthe inte-
gratedopticaldensityandreconstructhe opacityin
the pixel shader Thenthe shaderasto carry out
thefollowing calculations:

1) Computethe perspectiely interpolatedscalar
values(S; andS,), the gradientdG; andGp)
andtheray sgmentlengthl.

2) Calculated®=1 2 !

3) Lookupall threepre-integrationtablesat posi-
tion (St, S, 19.

4) Performdiffuselighting of frontandbackgra-
dient(l = G¢ L andlp= Gy 1).

5) Calculaterepresentatie gradientfor specular
h|ghl|ghtG§pec: WGf + (1 W)Gb

7) Reconstructopacity from integrated optical
density

8) Add all colorsandblendwith framebuffer.

With this approactthe speculamighlight is repro-
ducedcorrectly over multiple opaqueiso-surbices
within a singletetrahedrorandis approximatedef-

ciently for semi-transparertansferfunctionsas
seenin Figure11. In orderto furtherincreasehe

accuray of both diffuse lighting and the specular
highlight, additionalsampleson eachray segment
canbeused.Theresultingimagequickly corverges
to thecorrectsolution,sofour samplegerray seg-

mentareusuallysufcient. A largernumberof sam-
plessigni cantly lowersthe Il rate.

Figure 11: Specularhighlight on opaqueisosur
faceswithin a single tetrahedron(left), approxi-
mationfor a semi-transparergetting(middle) and
“correct” solutionwith four samplesper ray seg-
ment(right).

9 Conclusions

We have describedan ef cient corvexi cation al-
gorithm for the purposeof visibility sorting arbi-
trary unstructuredvolumetric grids. We proposed
an easyto implementcorvexi cation algorithmby
reducingthe complex geometricaloperationsto a
sequencef operation®ntrianglemeshesWeused
this methodto transferconcae (and not necessar
ily agyclic grids)into corvex meshesvhich canbe
sortedef ciently with the plain MPVO/MPVO-C
algorithm. As a result, our methodis two to three
times fasterthan the fastestknovn sorting tech-
nique,the BSP-XMPVO algorithm. Our approach
is on par with the latesthardware-accelerateday
castingalgorithmbut our performanceés indepen-
dentof thewindow size.Finally, we alsoaddressed
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the high-quality reconstructiorof the ray integral
usingthe pre-intgratedlighting technique.
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11 Additional Material

For the corvenienceof the reader we provide a

movie which illustratesthe corvexi cation process
for two interleaving gears. In eachframethe cut-

ting operationwith the lowestintersectioncountis

performed.Imaginarycells outsidethe corvex hull

of thedatasetarediscarded.

References

[1] J. Comba,J. T. Klosowski, N. L. Max, J. S. B.
Mitchell, C. T. Silva, andP. L. Williams. FastPoly-
hedralCell Sortingfor Interactve Renderingof Un-
structuredGrids. ComputerGraphicsForum (Proc.
Eurographics'99), 18(3):369-3761999.

J. Comba,J. Mitchell, and C. Silva. On the Con-
vexi cation of UnstructuredsridsFromA Scienti ¢
VisualizationPerspectie. TechnicaReportUUSCI-
2004-004,Scienti ¢ Computingand Imaging Insti-
tute, University of Utah, Salt Lake City, July 6,
2004.

R. Farias,J.S.B. Mitchell, andC. T. Silva. Zsweep:
An efcient andexact projectionalgorithmfor un-

structuredvolume rendering. In IEEE Symposium
on VolumeVisualization'00, pages91-99,2000.

J.E. GoodmarandJ. O'Rourke. Handbookof Dis-
crete and ComputationalGeometry CRC Press
LLC, ISBN 0-8493-8524-51997.

S. Guthe,S. RoettgerA. SchieberW. Strasserand
Th. Ertl. High-Quality Unstructuredvolume Ren-
deringonthe PCPIlatform.In Proc. EG/SIGGRAPH
GraphicsHardware Workshop'02, pagesl19-125,
2002.

M. Karasick, D. Lieber, L. Nackman,and V. Ra-
jan. Visualizationof Three-DimensionaDelaunay
Meshes Algorithmica 19(1-2):114-1281997.

D. King andC. M. Wittenbrink. An Architecturefor

Interactve TetrahedraMolumeRendering.In Proc.

IEEE/EGWbrkshopon VolumeGraphics'01, pages
163-180SpringerVerlag,Wien, 2001.

[2

—

[3

—

[4

[l

(5]

[6

—

[7

—

(8]

El

[10]

[11]

(12]

[13]

[14]

(18]

[16]

[17]

(18]

[29]

[20]

[21]

[22]

(23]

666

M. Krausand Th. Ertl. Cell-Projectionof Cyclic
Meshes. In Proc. IEEE Visualization'01, pages
215-2222001.

N. L. Max, P. HanrahanandR. Crav s. Areaand
VolumeCoherencédor Ef cient Visualizationof 3D
ScalarFunctions. ComputerGraphics(SanDiego
Workshop on Volume Msualization) 24(5):27-33,
1990.

NelsonL. Max. Optical Modelsfor Direct Volume
Rendering.|EEE Transactionon Misualizationand
ComputerGraphics 1(2):99-1081995.

M. Meissner S. Guthe,and W. Strasser Interac-
tive Lighting ModelsandPre-Intgrationfor Volume
Renderingon PC GraphicsAccelerators. In Proc.
Graphicsinterface'02, pages209-2182002.

S. Roettger M. Kraus, and Th. Ertl. Hardware-
Accelerated Volume and Isosurhce Rendering
Basedn Cell-ProjectionIn Proc. Misualization'00,
pagesl09-1161EEE, 2000.

P. Shirley andA. Tuchman. A Polygonal Approx-
imation to Direct ScalarVolume Rendering. ACM
ComputerGraphics (San Diego Workshopon Vol-
umeVisualization) 24(5):63—70,1990.

C. T. Silva and J. S. B. Mitchell. The Lazy
SweepRay CastingAlgorithm for Renderingrreg-
ular Grids. |IEEE Transactionsn Visualizationand
ComputerGraphics 3(2):142-1571997.

C.T. Silva, J. S.B. Mitchell, andP. L. Williams. An
exact interactve time visibility orderingalgorithm
for polyhedralcell compleces. In IEEE Symposium
on\VolumeVisualization'98, pages87—94,1998.

C. M. Stein,B. G. Becler, andN. L. Max. Sort-
ing and Hardware AssistedRenderingfor Volume
Visualization. In Symposiunon VolumeVisualiza-
tion '94, pages33-89.IEEE, 1994.

M. Weiler and Th. Ertl. Hardware-BasedView-
IndependentCell Projection. In Proc. IEEE Sym-
posiumon VolumeMsualization'02, pagesl13-22,
2002.

M. Weiler M. Kraus, M. Merz, and Th.
Ertl. Hardware-BasedRay Castingfor Tetrahedral
Meshes.In Proc. Visualization'03, pages333-340.
IEEE, 2003.

P. L. Williams andN. L. Max. A Volume Density
Optical Model. In ComputerGraphics (Workshop
on \Volume Visualization'92), pages61-68.ACM,
1992.

P. L. Williams, N. L. Max, andC. M. Stein. A High
Accuray Volume Rendererfor UnstructuredData.
Transactionsn Visualizationand ComputeiGraph-
ics, 4(1):37-54,1998.

PeterL. Williams. Visibility OrderingMeshedPoly-
hedra. ACM Transactionson Graphics 11(2):103—
126,1992.

CraigM. Wittenbrink. CellFast: Interactve Unstruc-
turedVolumeRendering.In IEEE Visualization'99
Late BreakingHot Topics pages21-24,1999.

B. Wylie, K. Moreland,L. A. Fisk, andP. Crossno.
TetrahedralProjection using Vertex Shaders. In
Proc.|IEEE Symposiunon VolumeVisualization'02,
pages/—12.ACM Press2002.



