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Abstract
Finite element methods commonly use unstructured grids as the computational domain. As a matter of fact, the
volume visualization of these unstructured grids is a time consuming task. Here, the fastest known object order
algorithm is the projected tetrahedra algorithm of Shirley and Tuchman. Even with the upcoming of programmable
graphics hardware, the rendering performance did not keep up with the growing complexity of the simulation data.
In this paper we strive to improve the performance of the cell projection technique by posing several restrictions
on the optical model. This allows us to devise a simple but fast hardware-accelerated algorithm which is able to
project arbitrary polyhedral cells, that is tetrahedra, prisms, hexahedra, etc. For this reason, our algorithm is well
suited for the display of unstructured FEM meshes with mixed cell types, but it is also applicable to the real-time
display of gaseous phenonema, such as fire and ground fog.

CR Categories: I.3.5 [Computer Graphics]: Computational
Geometry and Object Modeling, I.3.7 [Computer Graphics]:
Three-Dimensional Graphics and Realism.

Keywords: Direct volume rendering, unstructured grids,
cell projection.

1. Introduction

In the area of volume visualization the availability of pro-
grammable graphics hardware has lead to both improved
performance and rendering quality. In the case of regular
data the pre-integration technique3 is the predominant recent
improvement. While the pre-integration technique has been
applied to unstructured tetrahedral grids even before12, the
performance of unstructured volume rendering methods is
still poor compared to the regular case. In this paper we try
to narrow the performance gap by posing several restrictions
on the optical model. This allows us to devise an algorithm
which efficiently utilizes the graphics hardware to speed up
unstructured volume rendering.

Typically, unstructured grids are generated by finite ele-
ment methods. In order to visualize the data, all cells first
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have to be sorted in a back to front fashion18, 1. After that,
each cell is decomposed into tetrahedra which can be dis-
played efficiently using the well known Projected Tetrahedra
(PT) algorithm of Shirley and Tuchman14, 15. Actual imple-
mentations of this algorithm achieve a peak performance of
250,00019 to 600,0004 tetrahedra per second including times
for sorting. Due to the growing complexity of the simulation
data frame rates of less than one frame per second are still
quite common for typical unstructured data sets.

Recently, hardware-accelerated methods have been pro-
posed to speed up the PT algorithm, but with actual graph-
ics hardware still no more than approximately 480,00016 to
490,00020 tetrahedra are possible (timings do not include
sorting). There also exist hardware concepts to overcome the
speed limitations, but it is uncertain when these concepts will
find its way into graphics accelerators6. Since recent efforts
to significantly speed up the PT algorithm have not led to
satisfactory results, we pursue a different strategy in this pa-
per: First we evaluate the theoretical limit on the number of
polyhedra that can be rendered on actual graphics hardware.
Based on these results we propose a reasonable modification
of the optical model to approach the theoretical limit.

2. Theoretical Performance

In principal, all the faces of an unstructured data set have
to be treated to reconstruct the ray integral exactly. For the

c© The Eurographics Association 2003.



S. Roettger and Th. Ertl / Cell Projection of Convex Polyhedra

case of hexahedral cells, this results in 6 faces with 4 ver-
tices each. Assuming that the volumetric grid can be ren-
dered with triangle stripping, 8 vertices have to be passed
down the graphics pipeline per hexahedron. Actual graphics
accelerators like the NVIDIA GeForce3 reach a peak perfor-
mance of about 12 million vertices per second using triangle
strips (in practical experience). Thus, the maximum theoret-
ical performance of the NVIDIA GeForce3 is 1.5 million
hexahedra per second.

In order to verify the theoretical result, we first applied
maximum intensity projection (MIP)5. The advantage of
MIP is that a volumetric grid can be visualized just by ren-
dering all the faces of the cells in an unsorted order. Without
great loss of accuracy the scalar values can be assumed to
vary linearly inside each hexahedron. Then the maximum
projected scalar value of each ray segment is either the value
on the front or on the back face. Using this approach we
achieved a performance of 643,000 hexahedra or 5.1 million
triangles per second. Assuming that a hexahedron needs to
be decomposed into at least 5 tetrahedra to be rendered with
the PT algorithm the experimental result of 643,000 hexa-
hedra per second corresponds to 3.2 million tetrahedra per
second. This is still far away from the theoretical maximum,
but it is almost a magnitude faster than the best known PT
implementation.

The performance for such a simple optical model like MIP
is already considerably lower than the theoretical limit. This
is mainly due to the large rasterization overhead. Hence, it is
no surprise that the performance is even worse in the case of
the standard volume density optical model17. This is due to
the requirement of visibility sorting. Conceptually, the tetra-
hedra must be read, written, and read back from main mem-
ory for sorting (compare Wittenbrink et. al19). With increas-
ing rendering speed of the graphics accelerator the memory
bandwidth consumed by visibility sorting becomes the limit-
ing factor. This behaviour starts at approximately 1.5 million
tetrahedra per second on actual PC hardware. Since the total
performance is currently only around 600,000 tetrahedra per
second the main limiting factor is still the graphics accelera-
tor (and the CPU). We suspect that a significant performance
bump beyond the mentioned 1.5 million tetrahedra per sec-
ond limit is possible only with a structural paradigm shift of
graphics accelerators or special purpose hardware.

3. Projected Polyhedra Algorithm

Because of the limiting behaviour of visibility sorting, we
devise an efficient algorithm for an emissive optical model8

which does not require sorting. In our opinion this optical
model can be considered to be a good tradeoff between speed
and quality. The emissive optical model neglects absorption
so that the ray integral is simply the sum of all emissions
along each ray. As a welcome side effect sorting is not re-
quired, since the blend function is commutative. In compar-
ison to the standard optical model the emissive model gives

less visual clues but as we will see the implementation is
extremely simple so that it can serve as a fast preview and
prototyping option.

Recently, Mech9 proposed a method to render bounded
layered fog using an emissive optical model. The bounded
fog is defined within a triangular surface mesh which al-
lows for easy hardware-accelerated computation of the ray
integral. The length of each ray segment is calculated in the
frame buffer by coding the distance from the near clipping
plane into the vertex color. Then the length of the ray seg-
ments can be computed by rendering the back faces of the
fog boundary and by subtracting the front faces. While this
approach is simple yet very fast, it assumes a constant fog
density and requires a 12 bit visual to eliminate Mach bands.
In the following we extend this algorithm to project arbitrary
cell types, such as tetrahedra, hexahedra, or prisms, without
the restriction to a 12 bit frame buffer and with linearly in-
terpolated densities within each cell.

Our so called Projected Convex Polyhedra (PCP) algo-
rithm requires three passes per cell. In the first two passes
the normalized length of the ray segments is calculated in the
alpha channel of the frame buffer. For this purpose, the dis-
tance d to the near plane is computed for each vertex of the
cell. Let dmax denote the maximum distance per cell, let dmin
denote the minimum distance, and let ∆d = dmax − dmin be
the difference of both (see also Figure 1). Then the back
faces of a cell are rendered into the alpha channel of the
frame buffer with the alpha component of each vertex set
to α = (d−dmin)/∆d. In the same fashion, the front faces of
the cell are rendered into the alpha channel with subtractive
blending enabled. As a result, the normalized ray segment
lengths are now available in the alpha channel of the frame
buffer.

∆d
min d

near plane

Figure 1: Projection of polyhedral cells.

In the last pass all faces of the cell are rendered
into the color channel of the frame buffer. Let κ(S) de-
note the transfer function of the emissive optical model
depending on the scalar value S. Then the color I
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of each vertex is set to I = κ(S)∆d/2 using the fol-
lowing blend function in OpenGL notation: glBlend-
Func(GL_DST_ALPHA,GL_ONE). This effectively mul-
tiplies the average emission along each ray segment with the
segment length already stored in the alpha channel.

In contrast to Mech’s method we do not require a 12 bit
visual, since we use normalized ray segment lengths for each
cell. Another solution to suppress the Mach bands would be
to use the floating point render target of actual PC graphics
accelerators such as the ATI Radeon 9700. However, since
the algorithm is mainly rasterization bound the increased
bandwidth for the floating point render target would signifi-
cantly slow down rendering. Also Mech’s algorithm is not as
flexible as ours. Using our method, almost any desired volu-
metric object or (emissive) effect can be constructed from
tetrahedra, prisms, and hexahedra in a very compact way
(compare Figure 2).

Figure 2: Synthetic data sets: A search light with quadratic
intensity attenuation (top row), a laser cone (bottom left),
and a campfire generated with 3D Perlin noise (bottom
right).

4. Results

In principle, all types of cells used for FEM such as tetra-
hedra, hexahedra, prisms, pyramids etc. are compatible with
our approach. For the common case of projected hexahedra
Schussman et al.13 report about 80,000 hexahedra per sec-
ond. We achieve about 212,000 hexahedra per second, which
is a performance increase of 265%. Compared to the 643,000
hexahedra per second of the MIP method, the performance
difference is mainly due to the increased number of render-
ing passes (3 instead of 1).

In Figure 3 and 2 example data sets are shown that have
been visualized with the PCP algorithm. The corresponding
timings are given in Table 4. To speed up projection hexahe-
dra with zero emission were discarded.

Figure 3: Blunt Fin and Bucky Ball data set.

Data set dimension #hexahedra frames per sec.

BluntFin 32×32×40 37,479 8.5

Bucky Ball 32×32×32 29,791 15.9

Search Light 16×4×32 1,395 115.8

Camp Fire 16×16×16 3375 51.3

Figure 4: Timings for hexahedral projection.

5. Application Example: Ground Fog

Besides the application area of scientific volume visual-
ization as demonstrated in Figure 3 the performance and
flexibility of the proposed cell projection algorithm paves
the way for other fields of application. As an example, we
demonstrate the real-time display of natural gaseous phe-
nomena. In principle, all effects related to light-emitting gas
can be modeled. In particular, the display of ground fog in
terrain rendering scenarios benefits from our algorithm, as
shown in the following.

In a terrain rendering scenario the landscape is commonly
given as a height field. Here, the basic idea to display ground
fog is to use a second height field (the ground fog map)
which defines the height of the fog layer above the ground.
Each triangle of the surface mesh is treated as a base triangle
onto which a vertically aligned prism is stacked. The height
of the prisms, that is the heights of the three vertical edges of
each prism, are derived from the ground fog map (see Fig-
ure 5).

At the top left of Figure 6 an example height field of
Yukon Territory, Canada, is depicted. The shown ground fog
has been generated with 2D Perlin noise10. In order to re-
duce the number of displayed triangles and stacked prisms,
we used a continuous level of detail (C-LOD) approach7, 2.
The applied terrain rendering algorithm11 also implements
geomorphing so that the popping effect is suppressed ef-
ficiently. This allows the viewer to fly through the ground
fog without experiencing any temporal aliasing artifacts. We
achieved an average frame rate of approximately 25 Hertz
for a window size of 512×384. Inside the fog, we have to
take care of prisms that intersect the near clipping plane.
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triangulated surface

stacked prism

base triangle

edge height
is derived from
ground fog map

Figure 5: Stacking prisms onto a triangulated surface.

In such a case the ray segment lengths are partially invalid,
since the corresponding back faces are not rendered com-
pletely. To circumvent this problem, we also render the inter-
section of each prism with the near clipping plane with α =
(dnear −dmin)/∆d after the second pass. The same strategy is
necessary after the third pass: The intersection of each prism
with the near clipping plane is rendered with correctly inter-
polated colors to avoid the partial display of clipped tetrahe-
dra.

The ground fog in the valley as shown at the top right
of Figure 6 is displayed with maximum intensity projection.
The corresponding height field has been painted by hand
with a standard image manipulation application. Since the
MIP method requires only one pass in comparison to the
three passes of the PCP algorithm the rasterization bottle-
neck is reduced significantly. This leads to more than twice
the frame rate (> 50 Hz) as in the previous example.

Despite the seemingly unsuitable optical model we have
found a reasonable setup for the MIP method: The fog’s op-
tical density is set to zero at the bottom of the prisms. At the
top of the prisms the density correlates to the height of the
fog layer. Although this setting does not reproduce the fog
physically it is well suited for the real-time display of foggy
areas in interactive entertainment where fog can be used as
a game play relevant element.

Another application area of the described ground fog ren-
dering method is the display of the Aurea Borealis, since
polar light is a purely emissive natural phenomenon. We set
up a height field that corresponds to the penetration depth
of the particles into the earth’s ionosphere. The result of this
procedure can be seen at the bottom of Figure 6.

6. Conclusion

We have presented two fast yet simple cell projection algo-
rithms ,namely the MIP and the PCP method, that are suited
for maximum intensity projection or an emissive optical
model, respectively. The algorithms are capable of project-
ing arbitrary polyhedral cells. Therefore they can be applied

Figure 6: Ground fog generated with 2D Perlin noise. Top
left: Emissive optical model. Top right: Maximum Intensity
Projection (MIP). Bottom: Aurea Borealis (polar light).

to visualize mixed type meshes that are generated by FEM
simulations. Due to their flexibility, they are also suited for
the display of volumetric effects in interactive entertainment.
We have demonstrated this by rendering fire and ground fog
in real-time.
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