
Hardware Accelerated Terrain Rendering by Adaptive Slicing

Stefan Röttger, Thomas Ertl

Visualization and Interactive Systems Group
University of Stuttgart, Germany

�

Abstract

Many terrain rendering algorithms have been de-
veloped, which perform a variety of mesh opti-
mizations to achieve interactive frame rates. The
most prominent approach is the so called continu-
ous level of detail technique, which approximates
a terrain by computing a view-dependent triangula-
tion. One disadvantage of this approach is the fact
that the rendered terrain is of course just an approx-
imation of the original data set. By exploiting the
capabilities of todays mainstream PC graphics ac-
celerators we propose a new technique for the ex-
act rendering of height fields. Due to its relation-
ship with volume slicing we call it adaptive ter-
rain slicing. This technique is adaptive in the sense
that a bundle of slices is used to sample the terrain,
whereas the number of slices is determined to as-
sure sub-pixel accuracy. The core of our approach
is a hierarchical bounding box representation of the
terrain, which is traversed in a top-down order. Dur-
ing traversal we calculate the actual rendering costs
of our adaptive terrain slicing approach, which en-
ables us to decide whether it would be faster to ren-
der the contents of the actual bounding box or to
descend further down the hierarchy. After that the
minimized terrain slicing costs are compared to the
cost of polygonal rendering and the faster method
of both is applied. Since the speed of our terrain
slicing approach is limited mainly by the rasteriza-
tion bandwidth of the graphics hardware, we can
efficiently decouple the rendering costs from geo-
metric complexity leading to high frame rates with-
out compromising image quality. In particular, our
approach is well suited for replacing the commonly
used bump maps with the visually more pleasing
displacement maps.

�
Universität Stuttgart, Institut für Informatik, Abt.

VIS, Breitwiesenstraße 20-22, 70565 Stuttgart, Ger-
many, E-Mail:

�
Stefan.Roettger � Thomas.Ertl �

@informatik.uni-stuttgart.de .

1 Introduction and Motivation

Although terrain rendering is a research area with a
long history it is still a topic of actual interest, es-
pecially in GIS (Geographic Information Systems)
and interactive entertainment. Among the first at-
tempts to visualize a terrain, acquired by satellite
imagery or cartographic digitization for example,
resulted in the utilization of the so called TINs (Tri-
angulated Irregular Networks [18]). By generat-
ing an approximate triangle mesh the number of
polygons was reduced to achieve interactive frame
rates. The most important disadvantage of such
an approach is the usage of an object space ap-
proximation criterion that did not take advantage
of the special properties of a terrain, that is the
huge lateral extent of a terrain in comparison to its
height. More advanced visualization algorithms are
thus using a screen space based approxiation crite-
rion leading to a view-dependent triangulation. The
roots of these algorithms are going back as far as
to the mid 70ies. Since then flight simulators have
been using levels of detail methods to accelerate
terrain rendering. Nowadays, the most prominent
technique is the so called continuous level of de-
tail approach [10, 11, 3, 15, 13], but other well
known techniques like progressive meshes [5, 6, 7]
or wavelets [4] have been applied to terrain render-
ing as well to exploit the benefits of view-dependent
triangulations.

In order to eliminate a visually irritating draw-
back of these view-dependent algorithms, the so
called popping effect, LOD interpolation schemes
have been introduced in [1, 15, 7, 13], which are
commonly known under the term geomorphing. All
these approaches spend a great deal of the render-
ing time to compute the view-dependent triangula-
tion. Recent image based approaches, however, are
utilizing the rapidly increasing rasterization perfor-
mance of mainstream PC graphics accelerators to
decouple the geometric complexity from rendering

VMV 2001 Stuttgart, Germany, November 21–23, 2001



time complexity. Without being exhaustive a list of
those algorithms includes layered impostors [16, 2],
isosurface extraction with 3D textures [19, 14], veg-
etation rendering by slicing [8] and relief texture
mapping [12]. The relief texture mapping approach
uses a separable 2D image warp to preprocess a dis-
placement map, which afterwards can be rendered
by standard texture mapping hardware. While this
approach would be a fast solution to render a ter-
rain given by a height field or a displacement map,
it is still not applicable, because prewarping is not
yet supported by graphics hardware and has to be
accomplished in software.

In this paper we propose a new technique called
adaptive terrain slicing, which allows us to display
a terrain or a displacement map at high framerates
and on standard PC graphics hardware.

Our slicing approach is based on the elevation
map white paper from NVIDIA [17], which shows
how to draw horizontal slices through a terrain. Be-
cause of the restriction to horizontal slices this ap-
proach is suited only for rendering height fields
from the distance and from above. A viewer that
is located on top of the landscape would be able to
easily distinguish single slices. In contrast to that
approach we show how to draw arbitrarily oriented
slices through the terrain, which enables us to view
the terrain from arbitrary angles and positions and
with or without perspective projections. A simi-
lar technique for hardware accelerated displacement
mapping of polygonal models has been presented in
[9]. However, the authors did not specifically ad-
dress the special case of terrain rendering, which
leaves much more room for improvement. Further-
more, we are introducing an error measurement by
which the number of drawn slices can be adjusted
to ensure sub-pixel accuracy. Adaptively choosing
the density of the slices enables us to reduce the re-
quired number of slices for distant parts of the ter-
rain, where the area of the rendered triangles corre-
sponds to less than one pixel. Thus, by rendering a
single terrain slice a considerable amount of trian-
gles can be rasterized.

We also present a hybrid technique, which uses a
bounding box hierarchy to adaptively balance the
load between terrain slicing and normal polygon
rendering, which is chosen for parts of the terrain,
where a single triangle maps to much more than
a single pixel. These parts can not be rasterized
efficiently, because the number of required slices

would be much too high to ensure sub-pixel accu-
racy. In these cases we switch back to normal poly-
gon rendering, which is necessary only in the vicin-
ity of the point of view.

Due to the image based nature of our approach
the rendering complexity is almost independent of
the geometric complexity of the underlying dis-
crete mesh and is limited mainly by the rasterization
bandwidth of the graphics hardware. In comparison
to continuous level of detail algorithms we achieve
high frame rates without compromising quality and
without performing time consuming triangulations.

2 Terrain Slicing

The first step to decouple terrain rendering from
geometric complexity is to set up an image based
method that is able to sample a height field by
means of slicing. With respect to this goal, the first
approach that might come into mind is the volume
slicing analogue. Here a cartesian volume data set is
sampled by rendering a set of parallel slices or con-
centric shells that intersect a 3D texture map, which
contains the Hausdorff distance to the object’s sur-
face. Then the polygonal object can be rasterized
by simply applying an appropriate transfer function
and an alpha test that cuts away the transparent parts
of the volume. Because of the huge memory re-
quirements of the volumetric terrain representation
this method is not well suited for terrain rendering.
Furthermore, 3D textures are not yet supported on
every graphics platform.

Nevertheless, it turns out that we can achieve
our goal without the use of 3D textures by
utilizing a special OpenGL extension and en-
coding the elevation values of a height field (or
displacement map) into the alpha channel of a
2D texture map. Suppose we want to render
an arbitrarily oriented slice through the terrain,
then this can be accomplished in the following way:

1. Encode the terrain elevations into the alpha
channel of a 2D texture mip-map by normal-
izing the height values to the range

�
0 � 1 � . The

smallest height maps to one and the highest el-
evation maps to zero. The red, green and blue
channels can be used to represent a perspec-
tively rectified photo (ortho-image) of the ter-
rain in the usual way.



2. Set up the texture coordinate generation stage
of OpenGL, so that a 3-space vertex is
projected automatically onto the x-z plane,
and the derived texture coordinates s and t
are mapped to the correct coordinate range�
0 � 1 � � �

0 � 1 � .
3. Initialize the texture rasterization

stage by using the OpenGL extension
GL EXT texture env combine with
the following setup, which has the effect of
adding the primary alpha component to the
texture alpha component scaled both by a
factor of 1

2 :

GLfloat color[]=
{1.0f,1.0f,1.0f,0.5f};

glTexEnvi(GL_TEXTURE_ENV,
GL_TEXTURE_ENV_MODE,
GL_COMBINE_EXT);

glTexEnvi(GL_TEXTURE_ENV,
GL_COMBINE_RGB_EXT,
GL_MODULATE);

glTexEnvi(GL_TEXTURE_ENV,
GL_COMBINE_ALPHA_EXT,
GL_INTERPOLATE_EXT);

glTexEnvi(GL_TEXTURE_ENV,
GL_SOURCE2_ALPHA_EXT,
GL_CONSTANT_EXT);

glTexEnvi(GL_TEXTURE_ENV,
GL_OPERAND2_ALPHA_EXT,
GL_SRC_ALPHA);

glTexEnvfv(GL_TEXTURE_ENV,
GL_TEXTURE_ENV_COLOR,
color);

4. Enable alpha testing with the comparison
mode GL LEQUAL and an alpha value of 1

2 .
5. Draw an arbitrary terrain slice by assigning

each vertex an alpha value in the range
�
0 � 1 �

that corresponds to each vertex’ height (the y-
component of each vertex).

Since we used an inverse mapping to encode the
height values into the alpha texture component,
this setup effectively computes the difference of
each fragment’s height and the height of the ter-
rain. In our specific setting a height difference
of zero corresponds to a rasterized alpha value of
1
2 . By enabling an alpha test that passes below
or exactly at this value a fragment that lies ex-
actly on or below the surface of the terrain will

pass the alpha test. As a consequence, only the
solid part of the terrain will be rasterized (see also
Figure 1). We may also use the texture combiner
mode GL ADD SIGNED EXT as an alternative to
the mode GL INTERPOLATE EXT, but then we
would effectively lose one bit of accuracy leaving
only 7 instead of 8 available bits for encoding the
heights into the alpha channel of the texture.

The application of mip-maps ensures proper tex-
ture filtering. It is also advised to use anisotropic
texture filtering, where available. The utilized
OpenGL texture combiner extension is available on
nearly every mainstream PC graphics card includ-
ing the ATI Rage 128, the ATI Radeon and the
NVIDIA TNT2 up to the GeForce3 graphics accel-
erators. For this reason, the described hardware ac-
celerated terrain slicing approach will operate on a
broad range of personal computers and work sta-
tions.

y

z

x

α
ϕl

Screen

Terrain Slice

Bounding Box

d

h

∆h

Figure 1: The grey rectangle in the middle of the
figure indicates a single vertical terrain slice. Only
the solid part of the terrain below the zig-zag line
is rasterized. This is achieved by utilizing texture
combiners and alpha testing and by encoding the
height of the terrain into the alpha channel of a 2D
texture map.

3 Adaptive Terrain Slicing with Sub-
Pixel Accuracy

In the previous section we described how to draw
a single arbitrarily oriented slice through a terrain
model. Next we explain how to perform sub-pixel



exact terrain rendering by drawing a bundle of ter-
rain slices. Suppose we want to render only a small
part of the height field, which is enclosed by a
bounding box. The enclosed part of the terrain can
be rasterized by drawing a bundle of parallel slices
in the space of the bounding box (see also Figure 1
and 2). Depending on the angle of sight the slice
bundle is either aligned to the x-, y- or z-axis, so
that the slices are always facing towards the viewer.
For a vertical angle of sight higher than α � 45

�
a

horizontal y-slice bundle is drawn, otherwise either
a vertical x- or z-slice bundle is computed. In or-
der to improve performance and to take advantage
of the early Z-test of modern graphics accelerators,
we are sorting the slices in a front to back fashion.

Figure 2: Screenshot of Yukon Territory with re-
duced accuracy. Therefore, single terrain slices are
becoming distinctable.

Now the main question is how to calculate the
minimum number of equally spaced slices, such
that the rasterization of the terrain will be sub-pixel
exact. Clearly this depends on the size of the enclos-
ing bounding box with horizontal size d and vertical
size h, the distance to the point of view, the angle
of sight, the dimension of the viewport (in pixels)
and the field of view as depicted in Figure 1. In
the case of a symmetric projection only the height
of the viewport py and the vertical field of view ϕ
need to be taken into account. Considering this, the
projected size (in pixels) of a line segment of length
x and average projection distance l, which is seen
under an angle of sight α, can be approximated by
the following equation with θ � cosα:

x
���

x � l � θ � � x � θ � py

l � 2tan ϕ
2

Using this approximation the minimum required
number of slices my in a horizontal slice bundle,
which is seen under a vertical angle of sight α, can
be expressed as follows:

my
� x

���
h � min l � cosminα �

Here min l and minα denote the minimum distance
and the minimum vertical angle of sight α of all
eight corners of the bounding box. As a result, a
consistent lower bound cannot be given for bound-
ing boxes that intersect the near clipping plane.
Similarily, the lower bound mx � z for a vertical slice
bundle is given by:

mx � z
� x

���
d � min l � 1 �

4 Adaptive Terrain Slicing versus
Polygon Rendering

Now that we can efficiently rasterize the solid parts
of the terrain with sub-pixel accuracy, an analy-
sis of the required number of drawn slices shows
that the amount of slices is quite small for distant
parts of the terrain, but can grow arbitrarily large
for near parts. Here polygon rendering is more ef-
ficient. For this reason, we estimate the rendering
cost of terrain slicing and polygon rendering and
subsequently choose the method, which is faster. In
order to fully exploit the advantages of such a hy-
brid approach, we use a hierarchical bounding box
representation of the terrain. For each bounding box
we calculate three costs during the traversal of the
hierarchy: the cost of brute-force polygon render-
ing, the cost of terrain slicing, and the sum of the
costs for descending to the next hierarchy level. Re-
cursively choosing the action with the lowest asso-
ciated cost effectively maximizes the overall render-
ing performance.

Typically, a large bounding box leads to a de-
scendance to the next hierarchy level, because the
sum of the rendering costs of the children are much
lower than the actual terrain slicing or polgon ren-
dering costs. At a certain hierarchy level descen-
dance does not pay off anymore. Then polygon ren-
dering is chosen for the vicinity of the view point,
whereas terrain slicing performes better in the dis-
tance (see also Figure 4). In our case the hierar-
chy is a quadtree, which is constructed from meshes
with 2n 	 1 grid points in each dimension. Other
mesh sizes need padding or resampling.



Figure 3: A screenshot of Yukon Territory, Canada,
rendered with sub-pixel accuracy by means of our
hybrid terrain slicing algorithm.

At first glance, the calculation of the exact ren-
dering costs, and in particular the correct propaga-
tion of these values up the quadtree, seems to be
a very complicated task. Fortunately, it turns out
that we can simplify this task due to the follow-
ing observation: Descending the quadtree does not
increase or lower the total cost of polygon render-
ing, because the total amount of triangles stays the
same. There is only a minor trade off due to the
reduced average length of the triangle strips. As a
consequence, we can minimize the terrain slicing
costs decoupled from the costs of polgyon render-
ing. This is achieved by means of a simple subdivi-
sion test, which compares the terrain slicing cost of
the actual node with the sum of the terrain slicing
costs of its children times a constant c:���������
	������ � �
������
����������� c �

4

∑
i � 1

����
����� ��!"�
i

At the end of the traversal we need to calculate the
polygon rendering costs only once in order to com-
pare against terrain slicing and choose the faster
method. The influence of the constant c will be-
come clear at the end of this section.

As we have seen, it basically boils down to ac-
curately estimate the rendering costs of terrain slic-
ing and polygon rendering. Since each graphics ac-
celerator has got its own performance profile, we
are measuring two characteristic constants at the
start up of the terrain rendering application. These
two constants are the number of vertices and the
number of pixels per second, which can be pro-
cessed by a specific graphics accelerator (denoted

Figure 4: The same screen shot as in Figure 3,
but the terrain slices have been replaced with their
bounding boxes and the geometry of the triangle
fans has been made visible by darkening the center
vertex. A larger version of the image can be seen on
the color plate.

by vtx speed and rst speed, respectively).
With these characteristic constants the time spent
by either processing n vertices or by rasterizing a
polygonal surface of area A and average distance
l, which is seen under an angle of sight α with
Θ � cosα, can be estimated as follows:	��$# ����
� �

n � � n	$�$# ��%&�����
'��
� ��$�
� �

A � l � Θ � � A � Θ'���� ��%��$��� �
(

py

l � 2tan ϕ
2 ) 2

In the case of using triangle fans instead of triangle
strips the polygonal rendering cost of a mesh with
size

�
s 	 1 � �

�
s 	 1 � can be approximated by:��$�
�$* � 	$�$# ��$�
� �

10 ��+ s
2 , 2 � 	'��
� ��$�
� �

d2 � min l � sinmaxα �
This formula is derived by adding the rendering
costs for vertex processing (first row) and pixel ras-
terization (second row). The number of processed
triangle fans of a mesh of size

�
s 	 1 � �

�
s 	 1 � is-

s
2 . 2. Each triangle fan consists of 8 triangles,

which are rendered by processing a total of 10 ver-
tices. When looking onto the terrain straight from
above the entire area of the block accounts for ras-
terization. For non-orthogonal viewing angles we
are weighting the area of the block with the sinus



of the maximum angle of view, which is a sufficient
approximation for the projected area of the triangle
mesh. Likewise, the terrain slicing costs for x-, y-
and z-slices are given by:����
� � � my �� 	$�$# ����
� �

4 � 	'&�
� ����
� �
d2 � min l � sinmaxα � �����
��� ��� � mx � z �� 	$�$# ����
� �
4 � 	'&�
� ����
� �

d � h � min l � cosminα � �

The number of processed vertices is four times the
number of slices, since each slice is drawn by a
quadrilateral, whereas the number of rasterized pix-
els depends on the projected area of the quads.

By analyzing the cost of terrain slicing we ob-
serve that by each level of quadtree descendance
the number of drawn slices approximately doubles,
whereas the rasterization area decreases by a fac-
tor that is determined by the shape of the bounding
boxes. In the worst case the rasterization area might
not be reduced at all. In this case the total rasteri-
zation cost is decreased by a factor of C � min l

min l � d
2

,

which is due to the reduction of the number of re-
quired slices in the furthermost child nodes. Since
our subdivision criterion is merely a comparison of
the terrain slicing cost of the actual node and the
sum of the terrain slicing costs of its children, the
quadtree traversal might be stopped before actually
the optimum level is reached. For this to happen the
condition 	$��# ��$�
� 	 '���� ��$�
���

c � � 2 � 	$�$# ����
� 	 C � '��
� ������ �

must be fulfilled. An intuitive interpretion of this
equation is that it cannot be true, if the ratio C is
lower than a certain unknown value C

�
, which can

be controlled by the constant c (c � 1). The other
way round, we can ensure that our cost minimiza-
tion is correct for every node with C � C

�
by choos-

ing an appropriate value for c. This means that our
minimization is correct for every node with at least
a certain projected size. In practice, we have found
c � 0 	 9 to be a reasonable choice. We have also
found that the rendering performance differs only
slightly for varying values of c, which indicates that
the optimization is already close to the optimum.

As mentioned in section 3, a lower bound on the
number of required slices cannot be calculated in
some cases. Furthermore, the correct estimation
of the rendering cost for a bounding box that in-
tersects the sides of the viewing frustum is difficult
to achieve. In these cases we simply decide to de-
scend further down the hierarchy. For a bounding
box that is completely invisible the rendering cost
is assumed to be zero, because it is culled by the
quadtree.

In Figure 3 a data set of Yukon Territory, Canada,
with 1025 � 1025 grid points is displayed by means
of our hybrid terrain rendering technique. The same
terrain is shown in Figure 4, but the sliced parts of
the terrain have been replaced with their bounding
boxes. The geometry of the triangle fans has been
made visible by setting the color of the center ver-
tex to black. One can clearly see that our adaptive
terrain slicing method is chosen in the distance and
in flat areas. In the vicinity and for huge slopes the
brute force attack was considered to be faster, since
otherwise a large number of tall slices would have
been rendered.

In order to show the terrain slices, by which the
height field is rasterized, the accuracy of our al-
gorithm was lowered in Figure 2. One can spot a
bunch of vertical slices, but no horizontal slice bun-
dle, because the point of view is already too close
to the surface.

5 Eliminating Possible Glitches

In order to prevent misalignment of meshed tri-
angles, the vertices of adjacent triangle edges are
usually specified in the same order. Otherwise it
might happen that some pixels on a triangle edge
are omitted. Depending on the rasterization stage
of a graphics accelerator this effect is more or less
visible, but can be prevented by specifying the ver-
tices in the correct order. The seamless alignment
of rasterized quadtree nodes is a bit more compli-
cated. Fortunately, we only have to pay attention to
the horizontal slices, since the vertical ones already
have sufficient overlap due to perspective reasons.
In order to ensure this for horizontal slices as well,
we just furnish the slices with a border that is at
least one pixel wide. The width of the border in
object space can be approximated as follows:


 �
�$���� ��������� � x
���

1 � min l � 1 ��� 1



Similarly, the vertical terrain slices with a projected
height of less than one pixel have to be adjusted,
too. Otherwise we would be able to look through
the surface. We circumvent this problem by ex-
tending the slices at the bottom and at the top by
an amount of one pixel. The latter also betters
the alignment of polygonal nodes with rasterized
ones, The alignment of triangles and slices is en-
tirely seamless when raising the slices by an amount
of exactly half a pixel.

6 Results

The traversal depth of the quadtree is not very high
compared to the accuracy of the rendered image.
Therefore, the CPU is offloaded efficiently and most
of the work is accomplished by the graphics acceler-
ator. Table 5 lists some performance measurements
for the Yukon Territory data set with different win-
dow sizes. With the size of the window increasing
the terrain slicing approach becomes more and more
costly, because the rasterized area of each bounding
box is increasing, too. Therefore, the polygon ren-
dering alternative is simultaneously becoming more
and more attractive, which leads to an increasing
number of rendered triangles. Compared to exclu-
sive polygonal rendering with quadtree culling our
method achieves a speedup of about 70% to 400%
depending on the size of the window.

Hence, the main limiting factor for the maximum
number of frames per second is the rasterization
bandwidth of the graphics hardware and neither the
size of the rendered mesh nor the speed of the main
processor. This fact is illustrated by Figure 6, which
shows the city center of Stuttgart, Germany, with a
grid resolution of 2049 � 2049 split into 2 � 2 tiles.
The achieved frame rates were only slightly lower
than those of the Yukon Territory data set with a
gris size of 1025 � 1025. Accordingly, the speedup
was approximately 3 to 4 times higher. The same
holds for Figure 7 showing a highly detailed fractal
landscape. In Figure 8 the intensity of the image is
correlating directly to the number of rasterized pix-
els. Due to adaptive terrain slicing the overraw is
decreasing in flat areas and with increasing distance
to the point of view.

For the Yukon Territory data set the quadtree con-
sisted of 21845 nodes, which were consuming ap-
proximately one megabyte of memory. The ter-
rain was represented by a 1024 � 1024 texture map

window size avg. fps min. fps
400 � 300 35.3 28.8
512 � 384 28.5 21.5
640 � 480 22.2 18.1
800 � 600 18.0 14.2
1024 � 768 15.1 11.0

window size triangles slices
400 � 300 68,736 11,941
512 � 384 93,952 14,832
640 � 480 151,296 13,445
800 � 600 209,152 13,296
1024 � 768 257,536 10,042

Figure 5: Performance measurements for the Yukon
Territory data set with a size of 1025 � 1025 on a 900
MHz AMD Athlon (CPU load: � 24%) equipped
with a NVidia GeForce2 MX SDR (vertices/sec:
9.5M, pixels/sec: 157M). For comparison, the per-
formance of brute-force polygon rendering with
quadtree culling is at the minimum 3.1 frames/sec
and 8.9 frames/sec on the average. This corre-
sponds to 585,856 and 2,101,250 rendered trian-
gles, respectively.

with 4 components. For the texture 4 megabytes
of dedicated graphics memory were allocated. The
quadtree representation was derived by resampling
the texture with a grid size of 1025 � 1025. Com-
paring the complexity of our algorithm and the data
structures with currently existing terrain rendering
approaches the memory consumption is one of the
lowest reported. What is more, no dynamically
changing data structures or sophisticated propaga-
tion schemes are required.

7 Terrain Slicing Extensions

In this section we will discuss a variety of exten-
sions that can either improve the visual quality or
the speed of our terrain slicing approach. Addi-
tionally, we are giving examples for other possible
application areas besides terrain rendering:

� On machines that support register combiners
(namely the NVIDIA GeForce graphics accel-
erator family) antialiased terrain slices can be
drawn by using a simple trick. Instead of us-
ing an alpha test to cut away the solid parts of



Figure 6: The city center of Stuttgart from above.

Figure 7: A highly detailed fractal snake.

the slices, the register combiners can be pro-
grammed to output opacity values, which de-
crease from one to zero, if a rasterized pixel
is above the surface. Then the slices just need
to be blended appropriately to obtain antialias-
ing.

� The NVIDIA GeForce3 graphics accelerator
supports the vertex shader extension, which
can be used to offload the CPU from calcu-
lating the vertex positions, texture coordinates
and opacities of each slice in the bundle. The
vertices of the starting slice of the bundle just
need to be shifted along the axis of alignment.
The opacities and texture coordinates of the
slice quads can be derived directly from each
3-space vertex.

� Sorting the slice bundles and the quadtree
in a back to front fashion allows the dis-

Figure 8: Yukon Territory with the image inten-
sity correlating to the number of rasterized pixels.
Brighter colors correspond to a higher overdraw.

play of height dependent fog. As the al-
pha component is already reserved for the
heights of the terrain, the opacity of the
slices needs to be encoded into the RGB
channels of the primary color with blend-
ing function glBlendFunc(GL SRC COLOR,

GL ONE MINUS SRC COLOR).
� In order to improve the visual quality and to

eliminate the angular look of triangles nearby
one could apply adaptive subdivision surfaces
to the polygonal mesh. Then the level of sub-
division should depend on a view-dependent
criterion.

� A hierarchical combination of terrain slices
with traditional TINs is also worthwhile con-
sidering in order to reduce the number of ren-
dered triangles. Keeping the error tolerance
low, such that the maximum deviation of the
irregular network falls below the height quan-
tization error, provides better performance for
smooth areas. A combination with continuous
level of detail algorithms may also have syn-
ergetic effects. In such a hybrid approach our
terrain slicing technique could be used to ren-
der distant parts of the terrain.

� Because of the simple data structures that were
employed for terrain slicing, a partial modifi-
cation or animation of a terrain is fairly easy
to achieve. Basically, only the texture map and
the bounding box hierarchy have to be updated
each time the height field is changed.

� In interactive entertainment bump maps are
commonly used to enhance the visual quality



of surfaces, but when approaching these bump
maps they unfortunately reveal their flat na-
ture. Introducing displacement maps at this
point (see also [12]) helps to improve real-
ism pretty much. To render these displacement
maps only a small number of terrain slices are
needed on the average, thus our approach is
especially suited for displaying these maps at
high frame rates (see Figure 9).

Figure 9: Top Left: A brick texture with a dis-
placement map (minimum frames/sec: 32.5, aver-
age frames/sec: 49.3; for a distant point of view
the maximum achievable frame rate is mostly lim-
ited by the vertical synchronization rate of the mon-
itor). Top Right: The same brick texture, but with a
flat bump map to show the visual advantages of dis-
placement maps. Bottom Row: A part of the upper
screen shots has been zoomed out to show the dif-
ferences more clearly.

8 Conclusion

We have shown how to take advantage of the in-
creasing rasterization performance of mainstream
PC graphics accelerators in order to display height
fields at interactive frame rates. We achieved this
without compromising image quality. Our hy-
brid terrain rendering and slicing approach maxi-
mizes rendering performance by using a hierarchi-
cal bounding box representation of the terrain. Cur-
rently available graphics accelerators are not yet fast
enough at high screen resolutions. Since the per-
formance of our approach is mainly limited by the
rasterization bandwidth of the graphics hardware,

the point in time is predictable when high screen
resolutions will be supported. Right now, however,
our approach is well suited for the hardware acceler-
ated display of displacement maps. Substituting the
commonly used bump maps with the visually supe-
rior displacement maps can substantially enhance
image quality in interactive entertainment.

Acknowledgements

We would like to acknowledge that this work was
funded by the Ministry of Science, Research and
the Arts of the State of Baden-Württemberg within
the GISMO project. We also would like to thank
Matthias Hopf, Martin Kraus and Marcelo Magal-
lon for fruitful discussions.

References

[1] Daniel Cohen-Or and Yishay Levanoni. Tem-
poral Continuity of Levels of Detail in Delau-
nay Triangulated Terrain. In Proceedings of
Visualization ’96, pages 37–42. IEEE Com-
puter Society Press, October 1996.

[2] X. Decoret, G. Schaufler, F. Sillion, and
J. Dorsey. Multi-layered Impostors for Ac-
celerated Rendering. In Proceedings of Eu-
rographics ’99, pages 61–73, 1999.

[3] Mark Duchaineau, Murray Wolinsky,
David E. Sigeti, Mark C. Miller, Charles
Aldrich, and Mark B. Mineev-Weinstein.
ROAMing Terrain: Real-Time Optimally
Adapting Meshes. In Proceedings of Visu-
alization ’97, pages 81–88. IEEE Computer
Society Press, October 1997.

[4] M. H. Gross, R. Gatti, and O. Staadt. Fast
Multiresolution Surface Meshing. In Pro-
ceedings of Visualization ’95, pages 135–142.
IEEE Computer Society Press, October 1995.

[5] Hugues Hoppe. Progressive Meshes. In Pro-
ceedings of SIGGRAPH ’96, pages 99–108.
ACM SIGGRAPH, August 1996.

[6] Hugues Hoppe. View-Dependent Refinement
of Progressive Meshes. In Proceedings of
SIGGRAPH ’97, pages 189–198. ACM SIG-
GRAPH, August 1997.

[7] Hugues Hoppe. Smooth View-Dependant
Level-of-Detail Control and its Application to
Terrain Rendering. In D. Ebert, H. Rushmeier,



and H. Hagen, editors, Proceedings of Visual-
ization ’98, pages 35–42. IEEE Computer So-
ciety Press, October 1998.

[8] Aleks Jakulin. Interactive Vegetation Render-
ing with Slicing and Blending. In Short Pre-
sentations of Eurographics ’00, 2000.

[9] Jan Kautz and Hans-Peter Seidel. Hardware
Accelerated Displacement Mapping for Image
Based Rendering. In Proceedings of Graphics
Interface ’01, pages 61–70, June 2001.

[10] David Koller, Peter Lindstrom, William Rib-
arsky, Larry F. Hodges, Nick Faust, and Gre-
gory Turner. Virtual GIS: A Real-Time 3D
Geographic Information System. In Proceed-
ings of Visualization ’95, pages 94–100. IEEE
Computer Society Press, October 1995.

[11] Peter Lindstrom, David Koller, William Rib-
arsky, Larry F. Hodges, Nick Faust, and Gre-
gory Turner. Real-Time, Continuous Level of
Detail Rendering of Height Fields. In Pro-
ceedings of SIGGRAPH ’96, pages 109–118.
ACM SIGGRAPH, August 1996.

[12] Manuel M. Oliveira, Gary Bishop, and David
McAllister. Relief Texture Mapping. In Pro-
ceedings of SIGGRAPH ’00, pages 359–368,
2000.

[13] Renato B. Pajarola. Large Scale Terrain Visu-
alization Using The Restricted Quadtree Tri-
angulation. In D. Ebert, H. Rushmeier, and
H. Hagen, editors, Proceedings of Visualiza-
tion ’98, pages 19–26. IEEE Computer Soci-
ety Press, October 1998.

[14] C. Rezk-Salama, K. Engel, M. Bauer,
G. Greiner, and T. Ertl. Interactive Vol-
ume Rendering on Standard PC Graphics
Hardware Using Multi-Textures and Multi-
Stage-Rasterization. In Eurographics / SIG-
GRAPH Workshop on Graphics Hardware
’00, pages 109–118,147. Addison-Wesley
Publishing Company, Inc., 2000.

[15] Stefan Röttger, Wolfgang Heidrich, Philipp
Slusallek, and Hans-Peter Seidel. Real-
Time Generation of Continuous Levels of De-
tail for Height Fields. In V. Skala, edi-
tor, WSCG’98 Conference Proceedings, pages
315–322, Plzen, Czech Republic, February 9–
13 1998.

[16] Gernot Schaufler. Per-Object Image Warp-
ing with Layered Impostors. In Proceedings
of the 9th Eurographics Workshop on Ren-

dering ’98, pages 145–156, Vienna, Austria,
June 29–July 1 1998.

[17] Sim Dietrich. NVIDIA white paper: Elevation
Maps, http://www.nvidia.com, 2000.

[18] David C. Taylor and William A. Barrett. An
Algorithm for Continuous Resolution Polygo-
nalizations of a Discrete Surface. In Proceed-
ings of Graphics Interface ’94, pages 33–42,
1994.

[19] Rüdiger Westermann, Ove Sommer, and
Thomas Ertl. Decoupling Polygon Render-
ing from Geometry using Rasterization Hard-
ware. In D. Lischinski and G. W. Larson, edi-
tors, Rendering Techniques ’99, pages 45–56.
Springer-Verlag, Wien, New York, 1999.



Figure 10: Top: The city center of Stuttgart rendered by using the hybrid terrain slicing technique. Bottom:
A screen shot of Yukon Territory, Canada. The terrain slices have been replaced with their bounding boxes
and the geometry of the triangle fans has been made visible by darkening the center vertex.


