
Real-Time Generation of Continuous Levels of Detail for Height Fields

Stefan Röttger (snroettg@immd9.informatik.uni-erlangen.de)
Wolfgang Heidrich, Philipp Slusallek, Hans-Peter Seidel

Graphische Datenverarbeitung (IMMD9)
Universität Erlangen-Nürnberg

ABSTRACT

Height fields play an important role in the fast growing domain of Geographic Information Systems (GIS).
For exploring different kinds of geographic-based data sets on screen it is necessary to display height fields
at interactive frame rates. Because of the inherent geometric complexity, this goal is often unachievable even
with new generations of powerful graphics computers, unless the original height field data is approximated
in order to reduce the number of geometric primitives that need to be rendered without compromising visual
quality.
So far most algorithms have focused on global reduction or multi-resolution techniques, which reduce
resolution on the basis of surface roughness. A recent new approach called Continuous Levels of Detail
[LKR

�

96] introduced a hierarchical quadtree technique. In order to reduce the projected pixel error, the
height field is dynamically triangulated in a bottom up fashion according to the distance to the point of
view. Since resolution is allowed to change smoothly, the result is a much better image quality. However,
this algorithm still has a major disadvantage. With the viewpoint moving, the triangulation is continuously
changing, resulting in a phenomenon called vertex popping. As the observer approaches an area with detail
information, this detail will suddenly appear at a certain distance. To eliminate these artifacts we introduce
a new, rapid geomorphing algorithm, which operates top down on a quadtree data structure.

1 Introduction

A fast growing domain in computer graphics are the so
called Geographic Information Systems (GIS). They
allow to explore large geographic data sets interac-
tively on screen, which involves displaying height
fields in real-time. Typical height fields consist of a
large number of polygons, so that even most high per-
formance graphics computers have great difficulties to
display even moderately sized height fields at interac-
tive frame rates. The common solution is to reduce
the complexity of the scene while maintaining a high
image quality.

Most existing algorithms work on general surfaces by
building a lower resolution mesh [GGS95] or a Tri-
angulated Irregular Network (TIN) [TB94]. A height
field is triangulated by taking its roughness into ac-
count, building on the fact that flat areas and smooth
regions can be approximated by fewer triangles than
rough regions. On the other hand, height fields have
special properties, that one should take advantage of
for reducing the geometric complexity even further.
When displaying a height field, there will almost al-
ways be both regions that are quite close to the point
of view and those that are far away. As with surface
roughness, close regions must be approximated more
accurately than regions that are far away. Furthermore,
as the viewpoint is moving, the triangulation no longer
remains static. The term Level of Detail stands for all
algorithms that exploit this property.

A well known technique in that domain are the so
called Progressive Meshes [Hop96]. With recent ad-
ditions [Hop97], this techniques can also be applied to
view dependent triangulations, but requires large data
structures.

There are also various real-time simulation systems,
which divide height fields into smaller blocks, and
generate several multi-resolution triangulations for
each of those [SN95, KLR

�

96]. Switching between
these different levels of detail is done depending on
system stress and distance to the point of view.

Several problems need to be solved with this tech-
nique: First of all, cracks must be avoided between
adjacent edges of blocks at differing resolution. In
addition, popping must be handled when replacing a
block with one from another level of detail. The visual
appearance of the popping effect can be eliminated by
geomorphing between both levels of detail. However,
this multi-resolution strategy is not optimal, since it is
assumed that the distance to the point of view is con-
stant throughout each block.

An algorithm specifically designed for height fields
was presented at Siggraph ’96 [LKR

�

96]. It uses a
dynamically changing quadtree and a bottom up strat-
egy to determine whether a node has to be subdivided
or should be merged with adjacent nodes. For that
purpose it calculates an upper bound on the projected
pixel error, which is taken to be an on screen error
measure for image quality. The main disadvantage of
this bottom up strategy is that the pixel error function

has to be evaluated for all points of the height field.
That would be very costly, unless an error interval is
computed, which avoids subdivision and merging for
a large number of vertices. If modifications of the tri-
angulation are necessary, all affected nodes are vis-
ited. In that case all adjacent nodes also have to be
updated in a bottom up fashion. This results in a view-
dependent triangulation that allows for smooth tran-
sitions between different points of view. Although it
would theoretically be possible to include geomorph-
ing in this algorithm, this is not implemented in the
current version, so that popping still occurs.

We now present an algorithm that uses a top-down
strategy to create a triangulation and exploits geomor-
phing at virtually no additional cost. Vertex removal
is performed depending on its distance to the point of
view as well as local surface roughness, which is pre-
calculated. Using a top-down approach we only need
to visit a fraction of the whole data set in each frame,
which allows for high frame rates even with large
height fields. On the down side, more involved crite-
ria such as silhouette tests cannot be included into this
method, since they require the analysis of the whole
data set for each view point. In practice, however,
this is not too restrictive, because over-emphasizing
silhouettes causes lighting artifacts for non-silhouette
polygons.

The quadtree structure of our method allows for very
efficient clipping. Furthermore, memory usage is lim-
ited to the space required for the height field data, the
texture map plus one additional byte per data point.
In the following we incrementally develop our top-
down method, which includes geomorphing in a natu-
ral fashion.

2 The Algorithm

The underlying data structure of the algorithm is basi-
cally a quadtree. For the discussion in this paper, we
assume that the height field are of size 2n � 1 � 2n � 1.
A sample triangulation generated by our algorithm is
shown in Figure 1.

The quadtree is represented by a boolean matrix with
each block’s center entry set, if the corresponding node
is further refined. The quadtree matrix of the example
mesh in Figure 1 is shown below:

�������������
�

? ? ? ? ? ? ? ? ?
? ? ? ? ? 0 ? 0 ?
? ? 0 ? ? ? 1 ? ?
? ? ? ? ? 0 ? 0 ?
? ? ? ? 1 ? ? ? ?
? 0 ? 0 ? 0 ? 1 ?
? ? 1 ? ? ? 1 ? ?
? 0 ? 0 ? 0 ? 1 ?
? ? ? ? ? ? ? ? ?

��������������
�

Figure 1: A sample triangulation of a 9 � 9 height
field. The arrows indicate parent-child relations in the
quadtree.

Matrix entries labeled with a question mark do not
have to be set during the calculation of the triangu-
lation, since these values are not accessed by the top-
down algorithm for the given triangulation. Because
the number of nodes that have to be visited for each
frame only depends on the rendering quality, but not
on the height field size, the required memory band-
width is limited by the desired image quality.

2.1 Rendering the Height Field

The triangulated height field is drawn by recursively
traversing the quadtree where the corresponding ma-
trix entries are set. Whenever a quadtree leaf is
reached, a full or partial triangle fan [Boa92, NDW93]
is drawn. Triangle fans are well suited for drawing
triangulations with varying resolutions: In order to
avoid gaps at places where adjacent blocks have differ-
ent resolution, a conforming mesh is generated simply
by skipping the center vertex at these edges (see Fig-
ure 2). This method works as long as the levels of ad-
jacent sub-nodes differ by no more than 1. At the end
of the next section, we will see how this requirement
can be maintained during rendering by preprocessing
the height field and storing surface roughness informa-
tion.

During the generation of the triangle fans we need to
determine whether adjacent nodes are subdivided to
the same level, or not. If the neighboring node is not
subdivided to the same level, we can skip the center
vertex on the shared edge. This case can be detected by
checking the matrix entry corresponding to the neigh-
boring node, which then has to be zero (Note, that ac-
cessing matrix entries, that have not been set, is ex-
cluded, since level differences are supposed to be less
than or equal to one).

Figure 2: Recursively generated triangle fans for the
triangulation shown in Figure 1. The crosses indicate
skipped vertices.

2.2 Generating the Triangulation

Before a scene can be rendered as described in the
last section, the triangulation has to be built by recur-
sively descending the quadtree. At each sub-node a
boolean subdivision criterion is evaluated and its re-
sult is stored in the quadtree matrix. If the condition
is true and the finest level of detail has not yet been
reached, we descend further down the tree by visiting
all four sub-nodes.

Several aspects need to be taken into account for the
criterion: First of all, the resolution should decrease as
the distance from the viewer increases. This condition
can be guaranteed by ensuring that

l
d

� C (1)

for some constant C, where l is the distance to the eye
point, and d is the edge length of the block (see Fig-
ures 3 and 4). C is a configurable quality parameter.

d

l

Figure 3: Global resolution criterion: distance versus
size of quadtree cells.

The constant C controls the minimum global resolu-
tion. As C increases, the total number of vertices per
frame grows quadratically. Note that the condition is
evaluated only once for a complete triangle fan, which
consists of up to 10 vertices. In order to allow for
efficient computations, distance measurement is per-
formed using the L1-norm.

Figure 4: Triangulation of flat geometry based on the
global resolution criterion. Centers of triangle fans
have been colored white and edges black.

With the second criterion we want to increase the res-
olution for regions of high surface roughness. In fact,
we want to minimize the projected pixel error, which
is a good measure for image quality. When dropping
one level of the hierarchy, new error is introduced at
exactly five points: at the center of the quadtree node
and the four midpoints of its edges. An upper bound
to the approximation error in 3-space can be given by
taking the maximum of the absolute values of the ele-
vation differences dhi (see also Figure 5). The eleva-
tion differences are computed along the edges of the
node, as well as along its diagonals, which makes a
total of six values per node. The error in 3-space intro-
duced by dropping one level in the quadtree can now
be computed by pre-calculating the maximum of the
absolute values of these elevation differences, or alter-
natively by pre-calculating surface roughness values,
which we call d2:

d2 � 1
d

max
i � 1 � � 6

�
dhi

�
(2)

The d2-values of a node times the edge length d of the
node correspond to the approximation error in 3-space.
Thus, the d2-value times d is an upper bound for the
error introduced by dropping one level of detail.

A revised version of the subdivision criterion (1)
which includes the d2-values for handling surface
roughness can now be given in terms of a decision
variable f :

f � l
d � C � max � c � d2 � 1 � (3)

subdivide if f
� 1

The constant C again determines the minimum global
resolution, whereas the newly introduced constant c

dh

dh

dh

dh

dh

d

4

1

2

3

5/6

Figure 5: Measuring surface roughness

specifies the desired global resolution. The latter con-
stant directly influences the number of polygons to be
rendered per frame. Thus, by adjusting c to the current
system load, a constant frame rate can be maintained.

The major issue that remains open is how to guaran-
tee that the level difference of adjacent blocks is less
than or equal to one. Since the surface roughness of
adjacent blocks may differ significantly, this is neces-
sary to build a conforming mesh without holes. In the
following we describe how this can be achieved.

First suppose that Condition (3) is true for a given
block (f2

� 1), that is, the block has to be subdi-
vided. In this case, all adjacent blocks of twice the
edge length have to be subdivided, too. Thus, the fol-
lowing condition must hold for the decision variable
f1 of an adjacent block in order to limit the level dif-
ferences:

f1
� f2

� l1
d � d21

� l2
d
2 � d22

(4)

For a point of view falling inside the rectangular region
(indicated in Figure 6) Equation (3) is always satisfied,
since l1

d is always less than the minimum resolution

C. Outside this region the value of the fraction l1
2l2

is

bounded by 1
2 (for an infinitely distant point of view)

and the constant K with:

1
2

� l1
2l2

�
K � C � 2 � (5)

K � L1

2L2
� C

2 � C � 1 �

In other words, if d21
d22

is greater than K, then Condi-

tion (4) is true, since l1
2l2

satisfies Condition (5). How-
ever, since the d2-values, which correspond to surface
roughness, can grow arbitrarily large, Condition (4) is
not automatically fulfilled. Thus, if d21

d22

�
K, then we

have to modify the d2-values in the following fashion:
Starting with the smallest existing block, we calculate
the local d2-values of all blocks and propagate them

d

C d

L1
L2

l 2

l 1

d
2

Figure 6: Constraints on d2-values of adjacent blocks
in order to satisfy Condition (4).

up the tree. The d2-value of each block is the max-
imum of the local value and K times the previously
calculated values of adjacent blocks at the next lower
level. For our example, the d2-values propagated from
the bottom to the top of the quadtree are shown in Fig-
ure 7.

Figure 7: d2-values are propagated from bottom up
(indicated by arrows).

So far, we have only considered the 2D case, but with
some care we can adopt it for 3D. In this case, the ele-
vation of the view point needs to be taken into account
relative to the center of quadtree cells. However, since
height fields usually have small elevation compared to
their size, this distance can be approximated by the
difference between the elevation of the view point and
the average elevation of the quadtree nodes.

An example of the influence of the propagation of d2-
values throughout the height field, and its impact on
the triangulation is given in Figure 8. Here a few small
peaks are placed on an otherwise flat surface.

Figure 8: Propagating d2-values causes finer triangu-
lation near local peaks in a flat surface.

2.3 Geomorphing

So far, we have shown how to triangulate and render a
height field, but with a changing point of view popping
still occurs. Remember the decision variable f from
Equation (3): A close examination reveals that, if f
falls into the range

� 1
2 � 1 � , the quadtree is not further

refined, and a single triangle fan is generated for the
complete node. Values of less than 1

2 indicate that the
node has at least one child, while for values larger than
1, the node has no child at all.

Since morphing only happens in the leaf nodes of
the current triangulation, we can use b � 2 � 1 � f �
clamped to the range

�
0 � 1 � as a blending factor to

morph between two levels of detail (see Figure 5). De-
pending on how deep adjacent quadtree nodes are sub-
divided, there are up to five vertices where morphing
might have to be performed for each quadtree node
(see Figures 2 and 6). The elevation at these points is
interpolated linearly with factor b between the eleva-
tion of the lower level (which is the average of the two
corresponding corner points) and the elevation of the
higher level. The latter is taken directly from height
field data.

Some caution is required for avoiding cracks and gen-
erating a conforming mesh. Blending factors of ad-
jacent blocks differ slightly due to a variation of the
distances to the point of view. Thus, the interpolated
elevation at the midpoint of a shared edge is different
for adjacent blocks, causing cracks to appear.

In order to avoid this, we store blending factors in the
matrix, rather than boolean values. The blending value
for a shared edge is obtained by taking the minimum
of the blending values of the two involved blocks. A
value of zero indicates no subdivision, while other val-
ues directly represent the blending factors. We avoid
storing floating point values by using one byte per en-
try. As a result, we have 255 morphing steps, which is
precise enough in practice.

2.4 Clipping

A common improvement to reduce the number of
polygons to be rendered is clipping against the viewing

frustum. As we are already using a quadtree, we can
also use it for clipping. Provided, the level of detail
is not too high, a rectangular bounding box is com-
puted for each node, which is used for clipping against
the viewing frustum. In this way, most invisible ver-
tices can be discarded at little cost at an early stage
of the algorithm. Clipping can be applied both to the
mesh generation and rendering phase. For mesh gen-
eration we consider bounding boxes to be three times
as large, because the blending factors of some blocks
can contribute to mesh generation without the blocks
being visible themselves.

3 Results

All screen shots shown here have been taken from
the application running on a SGI Maximum Impact
workstation with a 250 MHz R4400 processor, 2
raster manager boards, and texture memory extension
(TRAM option card), while maintaining a constant
frame rate of 25 Hertz.

Images 9 and 10 show the height field and texture map
used in the following examples. The data describes a
region south of Haines Crossing in Yukon Territory,
Canada.

Figure 9: Height field used for examples.

Figure 10: Texture Map used for examples.

Figure 11: Rendered Yukon landscape.

Figure 12: Superimposed triangulation.

In the Images 11 and 12 the point of view used for
generating the triangulation has been located on the
landscape’s surface in the center of the image. The
levels of detail clearly depend on both distance to the
point of view and on surface roughness. The quality
control C was set to a value of 8, which also proved
to be a good choice for other data sets. The value of c
was dynamically chosen as to maintain a fixed frame
rate of 25 Hertz, which resulted in approximately 1600
triangle fans, or a total of roughly 15000 vertices per
frame. This corresponds to a two orders of magnitude
reduction of the original 1025 � 1025 height field.

Images 13, 14 and 15 show some sample triangula-
tions generated by our algorithm.

Image 18 shows the difference image between a real-
time screen shot (Image 16) and rendering the com-
plete height field (Image 17). The image quality is
worst at the silhouettes. The human eye, however, is
more sensitive to sudden changes of geometry, which
have been significantly reduced by the geomorphing
algorithm.

Images 19, 20, and 21 illustrate how triangulation ac-
curacy changes with varying frame rate.

The memory consumption of the final algorithm is
fairly low. Besides height field and texture map data
only the d2-values and blending factors have to be

Figure 13: Example showing a typical triangulation
generated by our algorithm.

Figure 14: Example showing a typical top view trian-
gulation.

Figure 15: A typical valley view.

stored. If d2-values are compressed to byte format,
which can be done in a linear or nonlinear way, there
is place enough in the quadtree matrix to store those
values as well. In the end, we get away with only a
single additional byte per grid point.

We are currently working on an efficient paging mech-
anism, that allows to render height fields that do not
entirely fit into RAM.

Figure 16: Triangulation for maintaining a frame rate
of 25 Hertz.

Figure 17: Same view as Figure 16 but with full reso-
lution.

Figure 18: Difference image of full and reduced reso-
lution.

4 Acknowledgments

We would like to thank Peter Lindstrom from Georgia
Tech for valuable hints and discussions.

References

[Boa92] OpenGL Architecture Review Board.
OpenGL Reference Manual. Addison-
Wesley, 1992.

[GGS95] M. H. Gross, R. Gatti, and O. Staadt.
Fast multiresolution surface meshing. In
G. Nielson and D. Silver, editors, Pro-
ceedings Visualization ’95, pages 135–
142. IEEE Computer Society Press, 1995.

Figure 19: Triangulation for maintaining a frame rate
of 25 Hertz.

Figure 20: Triangulation for maintaining a frame rate
of 38 Hertz.

Figure 21: Triangulation for maintaining a frame rate
of 76 Hertz.

[Hop96] Hugues Hoppe. Progressive meshes. In
Computer Graphics (Proceedings of Sig-
graph ’96), pages 99–108, 1996.

[Hop97] Hugues Hoppe. View-dependent refine-
ment of progressive meshes. In Computer
Graphics (Proceedings of Siggraph ’97),
pages 189–198, 1997.

[KLR
�

96] David Koller, Peter Lindstrom, William
Ribarsky, Larry F. Hodges, Nick Faust,
and Gregory Turner. Virtual GIS: A real-
time 3D geographic information system.
In G. Nielson and D. Silver, editors, Pro-
ceedings Visualization ’95, pages 94–100.
IEEE Computer Society Press, 1996.

[LKR
�

96] Peter Lindstrom, David Koller, William
Ribarsky, Larry F. Hodges, Nick Faust,
and Gregory Turner. Real-time, contin-
uous level of detail rendering of height
fields. In Computer Graphics (Proceed-
ings Siggraph ’96), pages 109–118, 1996.

[NDW93] Jackie Neider, Tom Davis, and Mason
Woo. OpenGL Programming Guide.
Addison-Wesley, 1993.

[SN95] M. Suter and D. Nüesch. Automated gen-
eration of visual simulation databases us-
ing remote sensing and GIS. In G. Nielson
and D. Silver, editors, Proceedings Visu-
alization ’95, pages 135–142. IEEE Com-
puter Society Press, 1995.

[TB94] David C. Taylor and William A. Barrett.
An algorithm for continuous resolution
polygonalizations of a discrete surface. In
Proceedings of Graphics Interface ’94,
pages 33–42, 1994.

