9th International Fall Workshop
VISION, MODELING, AND
VISUALIZATION 2004
November 16 - 18, 2004
Stanford (California), USA

Convexification of Unstructured Grids
Stefan Roettger, Stefan Guthe

- Unstructured tetrahedral grids need to be depth-sorted before rendering with the PT Algorithm
- Sorting time is linear for convex grids using the MPVO algorithm
- We use convexification algorithm to transform concave into convex grids

2nd Try
1st Try [
Concave Grid

The convexfication process starts with the Each concavity is split into smaller auxiliar From the resulting green convex
concavities which need to be split into polyhedra until all remaining polyhedra are polyhedra a DAG is constructed
convex polyhedra. Then these polyhedra conveXx. Above, the first try of a split is bad that can be sorted with the MPVO
are added to the original grid to yield a because it produces the redundant red cell. The in linear time. Note that the DAG
convex mesh. Splitting is performed along second cut is a better choice, since it has fewer has multiple dependencies per
the “concave” faces of a concavity. intersections with the boundary. face for the red nodes.

A 3D example is depicted on the left. It shows a
rotational concave solid enclosed in a cube. The cube
Is split subsequently until two convex polyhedra remain
which augment the rotational solid forming a convex
grid. Note that the auxiliar cells outside the convex hull
of the solid are discarded. In 3D the split operation is
much more complex than in 2D. However, we
managed to break it down into a series of simple
operations on triangle meshes which result in a robust
convexification algorithm.

- Once the convexified mesh is sorted, rendering is straightforward
- Drop all auxiliary polyhedra and project the remainig original tetrahedra with the P T algorithm
- Per-pixel exact evaluation of the ray integral is performed using pre-integrated lighting

The ray integral of each ray segment inside a
tetrahedron depends only on the scalar values
(S) and gradients (G) at the entry and exit points
and the ray segment length (l). Therefore, the
ray intregral can be pre-integrated for each ray
segment and stored in a lookup table
(dependent 3D texture map).




